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x  The Neutrino Factory: wish-list and constraints

X
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Proton driver & annexes
x CERN SPLbased scenario

x Fermilab (upgrade to Project X) scheme |

x RAL (upgrade to ISIS) scenario

Target system
x Hg-jet target developments
x alternative/mitigation options

Front-end system
x Front end status
x alternative/mitigation cooling options
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* We want a machine capable of:
x performing precision measurement of the last unknown mixing angleq,,
x search for CRinvariance violation in neutrino oscillations.
x determine the sign of Dm?;,
x measure all the oscillation parameters with an unprecedented precision.

x It requires an intense (4 MW, 1G1u/year), high-energy (> 20 GeV) neutrino and
anti-neutrino beams. Therefore putting the following constraints on the target &
accelerator systems:

x the target should be able to withstand beaminduced shocks.

x the muon beam should be bunched (allow both muon signs transport in
different RF buckets), rotated (reducing the energy spread) and cooled
(reduction of the beam emittance) over a small distance.

x arapid muon acceleration system able to transport the muons beam to two
decay rings with minimum beam losses.

% The feasibility study will determine:
x If we can overcome its technical challenges.
x the cost driving factors & risk mitigation solutions.

The neutrino factory feasibility study is on the road toward muon colliders.

V. ShiltsevO41 x AOA A - O1 1 zPledaly)EAA OO

4



SPLbased proton driver:
H- linac.

bunch frequency 352.2MHz.

repetition rate 50 Hz.

high-speed chopper < 2ns (including rise & fall times).

X X X X

x  Option 1: -
X 225 MW (25 GeV) Accumulation Duration SPL bean [::t:g::puls:s

OI’ 45 MW (5 GeV) =400 ps [353;2;:;21]5& P
[120 ns bunch -
x 1.1 x FOprotons/pulse. Vs <7

Compression t=0ps
x average pulse current 20nA. _Q@
x pulse duration 0.9 ms. C A
[2 ns bunches

t=60pus I W

x Option 2: C T
x 5 MW (2.5 GeV) and 4 MW (5 GeV). oo un x
x 2 x 1&*protons/pulse (2.5 GeV) and e C o
1 x 18 protons/pulse (5 GeV).

x average pulse current 40mA.
x pulse duration 1 ms (2.5 GeV) and 0.4 ms (5 GeV).

% Progress:
x beam instabilities studies in the accumulator investigated for 3 bunches.
x accumulator & compressor rings MADX lattice available for 3 bunches case.
x starting to list accumulator & compressor rings elements for the costing.
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% Fermilab Project X-upgrade-based proton driver, 4 MW at 8 GeV:

X

X
X
X
X

x Accumulator:;

X
X
X
X

increase the CWIlinac average current to 5mA.

need to increase pulsedinac duty factor to ~10% (Project X is ~5%).
need to increase number of particles petinac bunch.

add an accumulator ring.
add a compressor ring.

accumulator+compressor

Neutrinos
2 MW

Recycler /
Main Injector
120 GeV

~250 m circumference.
14 bunches ~100 ns long.

5mA ,
1.3 x 18protons/bunch.
stripping with foil or laser. m—»

x Compressor:

X
X

at entrance ~50 ns bunches.  Project X layout A
debunchin ~ few ns bunches & " i o

1.
Nuclear MW Muons

upgrade Keons

x Challenges & tasks:

X

stripping foil survival or laser

technigue demonstration.

X
X

instabilities/space charge studies.
beam size and angle at target optimization.



grade of the Rutherford Appleton Lab (RAL), | neutronspallation source)

to provide beam powers of 25 MW in the few GeV energy range.

Could be shared between a short pulsespallation neutron source and the
Neutrino Factory.

Would require an additional RCS or FFAG booster in order to:
x bring the proton beam to the necessary energy
x perform appropriate bunch compression

Current studies:
x |lattice and high-intensity studies for a ~3.3 GeV booster synchrotron and
beam lines
x 800 MeV high-intensity linac design
x RCS and FFAG lattice
studies for a main ring
accelerator

Current ISIS with TS1 & TS2

R&D needs: 51-5} - ! . Planned 0.83.2 GeV
x high-power front-end __ N __ RCS and a new TS3
(FETS) A > M
x  RF systems e YV (-

x  stripping foils RV oD
x diagnostics N P

f @/
x kickers O &



x muon capture in 20 T solenoid followed by an adiabatic taperto 1.5 T.

% Previous design (IDR):
x simulations (MARS15 & FLUKA) results showing high levels of energy deposition in
the magnets (~2.4 MW need to be dissipated in the shielding).
x both the Hg-jet and proton beam disrupt the Hg pool (need splash mitigation).

% Redesign:
«_better shielding of the SC ______ ®tTemeSmenCost
magnets from radiation Brhui S
x splash mitigation being

h and |ed ; tungsten-carbide (WC) beads + water .iiii

x mechanical support under [ F—— tungsten-carbide beads + water
improvement.

| I : : T
proton beam and mercury jet l '

% R&D:
x  MERIT (2007) validated 4 MW
proton beam operation in Hg.

- | mercury pool proton dump \
beam window

x  Target tasks: B _ :
x define target station infrastructure, including outer shielding, remote handling, Hg

cooling loop, beam windows and beam dump.
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ternative target systems under consideration:
x a metalpowder-jet
x a system of solid tungsten bars that are exchanged between beam pulses

x  Metal-powder-jet:
x testrig at RAL with 100 kg W powder
(grain size < 250mm) ~20 min continuous
operation.
x coherent free flow jet P ~ 2 bars.
x validation of results with simulations.

% Solid target:
x shock study using high-currents in thin W (Ta) wires.
x results in agreement with LSDYNA simulations.
x preliminary target change system engineering underway.

% Future R&D:
x flow improvement with mitigation of flux breakdown or
phase separation for the powder target.
x irradiation study for tungsten powder and tungsten pebble
bed at the CERNHiRadMat facility.
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evised (IDR) lattice optimization - need to get rid early
of unwanted patrticles:

x proton absorber for low-momentum protons.

x chicane for high-momentum particles.

x transverse collimation. proton
absorber

x Started to take the reference lattice parameters for bend
x engineering study back
x costing exercise

x  Remaining tasks: p.T. uf = bend
x determine realistic operational RF gradient limits out
(R&D @MTA).

x assess and mitigate energy deposition from particle

losses. i

x optimize lattice matching sections. target

x develop engineering design for magnets, RF and station
absorbers.
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F cavities sit in high (316 MV/m) magne ncreasing the risk of
breakdown as suggested by experiments performed at the Muon Test Area
(MTA) at Fermilab.

% Three alternative scenarios are under study as alternative to the breakdown

problem.
x bucked coll lattice — P— e
x magnetically insulated lattice Inner: - 1mr;+ ——
—— s e

x HPRF lattice

% bucked coill lattice:
x reduced magnetic field in the RF. )
x 1.80 mor 2.10 m long cell. —
x different current configurations.
x 2 cooling cells simulation in
G4MICE.
x tested with both reduced (1000 muons) and full
statistics.

Absorbers Absorbers

— | Fullcelllength |—

-> good transmission in comparison with the ISS lattice.

A.AlekouO O0AOA&I Oi AT AA AT I PAOEOIT 1 zRaAlel) A



% Magnetically insulated lattice:
x EN B field in cavity
x similar performance to the ISS lattice
x tested E to B angle at the MTA.

-> tolerance to coil misalignement <2 mm.

-> multipactoring & power consumption
Issues to address.

D. Stratakiset al., PRSTAB 14, 011001 (2011)
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