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1 Problem

Discuss the scattering (diffraction) of a plane electromagnetic wave of angular frequency ω by
a perfectly conducting half plane, considering the latter to be the limit of a parabolic cylinder.
Relate the results to the electromagnetic version of Babinet’s principle for complementary
screens [1, 2, 3].1

2 Solution

Diffraction of a scalar light wave by a half plane was considered by Fresnel (1818) in his
great mémoire [7], where a graph of the intensity was presented on p. 383,

Experiments in which polarization effects in scattering of light from a knife edge were
first performed by Gouy in 1883 [8]. A partial electromagnetic explanation was given by
Poincaré in 1892 [9]. The first “complete” electromagnetic solution was by Sommerfeld in
1895 [10, 11], using a somewhat obscure technique.2

Here, we consider a conducting knife edge to be a limiting case of a parabolic cylinder, and
take advantage of the fact that Helmholtz wave equation for a scalar wavefunction ψ e−iωt,

(∇2 + k2)ψ = 0, (1)

where k = ω/c and c is the speed of light in vacuum, is separable in parabolic-cylindrical
coordinates. Then, using an expansion of a plane wave in parabolic-cylindrical coordinates
[14, 15, 16], the problem of scattering of a plane wave by a surface of constant coordinates can
be given a series solution. This technique was first employed for scattering by a conducting
cylinder [17], using the expansion of a plane wave in cylindrical coordinates found by Jacobi
[18]. This technique can be used for surfaces of constant coordinate in the 11 coordinate
systems in which the Helmholtz equation is separable [19], and permits formal solutions to
a larger set of electromagnetic scattering problems than is commonly acknowledged. The

1A closely related problem is the diffraction of a plane electromagnetic wave by a perfectly absorbing
half plane [4, 5, 6].

2This technique was characterized by Poincaré [12] as extrémement ingéniuse. Another early review of
Sommerfeld’s method is given in [13].
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example of a conducting strip as a limit of an elliptical cylinder is considered in sec. 3 of
[20].

The relevance of parabolic-cylindrical coordinates to the knife-edge problem was realized
by Lamb [21, 22], who used them to give an alternative derivation of Sommerfeld’s solution,
which alternative we follow here.3 Other studies related to that of the present note include
[23, 26, 27, 28, 29, 30, 31, 32]. See also the Appendix.

The conducting screen lies in the plane y = 0 and occupies the region x > 0, as shown
in the figure on p. 2 (from [21]).

In addition to ordinary cylindrical coordinates (r, φ, z), we consider parabolic-cylindrical
coordinates (ξ, η, z) which are related (for 0 ≤ φ ≤ 2π) by,4

x+ iy = r eiφ =
(ξ + iη)2

k
,

x =
ξ2 − η2

k
, y =

2ξη

k
, (2)

ξ =
√
kr cos

φ

2
, η =

√
kr sin

φ

2
.

In this convention, the sign of ξ at a point (ξ, η) = (x, y) is the same as the sign of y, while
η is always non-negative. The half plane (x > 0, y = 0) corresponds to η = 0, and the
complementary half plane (x < 0, y = 0) has coordinate ξ = 0.

In this two-dimensional problem the incident wave vector lies in the x-y plane. In case
of incident electric field polarized parallel to the edge of the conducting half-plane screen,
i.e., in the z-direction, the current on the screen, and the scattered electric field, have only
a z-component, so that an analysis can be based on the scalar wavefunction ψ = Ez. The
boundary condition at the surface of the screen is ψ = 0 in this case.

If the incident electric field is polarized perpendicular to the edge of the screen, then the
scattered electric field lies in the x-y plane, while both the incident and scattered magnetic
field have only z-components. In this case an analysis can be based on the scalar wavefunction

3Lamb’s discussion seems little known, and is occasionally rediscovered, as in [24, 25].
4Parabolic-cylindrical coordinates are often defined with k replaced by 2 in eqs. (2). However, the

convention used here (following Lamb) avoids the appearance of numerous factors of
√
k/2 in later equations.
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ψ = Bz, for which the boundary condition at the surface of the screen is that the normal
derivative ∂ψ/∂y = 0.

It is useful to note that the scattered fields in case of a thin, plane conducting screen
obey symmetries perhaps first noted in detail by Meixner [33] (see also [34]),

Es
x(x,−y, z) = Es

x(x, y, z), Bs
x(x,−y, z) = −Bs

x(x, y, z), (3)

Es
y(x,−y, z) = −Es

y(x, y, z), Bs
y(x,−y, z) = Bs

y(x, y, z), (4)

Es
z(x,−y, z) = Es

z(x, y, z), Bs
z(x,−y, z) = −Bs

z(x, y, z). (5)

The symmetries for Es
z and Bs

z were considered by Lamb [21] to be “evident”, but they
depend on there being no current flow from one side of the screen to the other, as otherwise
the magnetic field energy in finite volumes surrounding the edge of the screen would be
infinite.

2.1 Normal Incidence

We first consider incident waves of the form ei(ky−ωt), which are normally incident on the
screen from y < 0. In the following we suppress the time-dependent factor e−iωt.

2.1.1 Electric Field Parallel to the Edge

We consider the scalar wavefunction ψ = Ez, which can be written as,

ψ = E0 e
iky + ψs(x, y), (6)

where ψs is the scattered wavefunction.
Lamb surmised (sec. 2 of [21]) that the scattered wave has the form,

ψs(x, y) = u(x, y) eiky + v(x, y) e−iky, (7)

where u and v are associated with the transmitted and reflected parts of the scattered wave.
Since ψs obeys Helmholtz’ wave equation, whose form in the parabolic-cylindrical coordinates
of eq. (2) is,

∂2ψs

∂ξ2 +
∂2ψs

∂η2
+ 4(ξ2 + η2)ψs = 0, (8)

the functions u and v obey the differential equations,

∂2u, v

∂ξ2 +
∂2u, v

∂η2
± 4i

(
η
∂u, v

∂ξ
+ ξ

∂u, v

∂η

)
= 0, (9)

where the + sign is for u and the − sign is for v. Taking u, v(ξ, η) = f(ξ ± η) ≡ f(ζu,v)
eq. (9) becomes,

f ′′ + 2iζu,vf
′ = 0, (10)
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for both u and v, which integrates to,

f(ζu,v) = a + b

∫ ζu,v

0

e−iζ2

dζ. (11)

That is,

u = f(ζu) = au + bu

∫ ξ+η

0

e−iζ2

dζ, v = f(ζv) = av + bv

∫ ξ−η

0

e−iζ2

dζ, (12)

and,

ψs = au e
iky + av e

−iky + bu e
iky

∫ ξ+η

0

e−iζ2

dζ + bv e
−iky

∫ ξ−η

0

e−iζ2

dζ. (13)

To determine the four constants au, av, bu and bv we first note that for x → −∞ and
small y, i.e., for small ξ and η → ∞, the scattered wave is negligible. In this region we must
separately have,

au + bu

∫ η

0

e−iζ2

dζ → 0, av + bv

∫ −η

0

e−iζ2

dζ = av − bv

∫ η

0

e−iζ2

dζ → 0. (14)

Using the fact (Dwight 858.560),∫ ∞

0

e−iζ2

dζ =

√
π

2
e−iπ/4 , (15)

we have that,

au +

√
π

2
bu e

−iπ/4 = 0, av −
√
π

2
bv e

−iπ/4 = 0. (16)

Finally, the condition that Ez = E0 e
iky + ψs vanish on the surface of the conducting screen

implies that,

− E0 = ψs(x > 0, 0) = ψs(ξ, 0) = au + av + (bu + bv)

∫ ξ

0

e−iζ2

dζ, (17)

and hence,

au + av = −E0, bv = −bu. (18)

Combining this with eq. (16) we find5

au = av = −E0

2
, bu = −bv =

E0√
π
eiπ/4, (20)

5In view of eq. (20), and recalling that the sign of ξ is taken to be the same as that of y, we have that,

ψs(x,−y) = au e
−iky + av e

iky + bu e
−iky

∫ −ξ+η

0

e−iζ2
dζ + bv e

iky

∫ −(ξ+η)

0

e−iζ2
dζ

= av e
−iky + au e

iky + bv e
−iky

∫ ξ−η

0

e−iζ2
dζ + bu e

iky

∫ ξ+η

0

e−iζ2
dζ = ψs(x, y). (19)

That is, ψs = Es
z satisfies the symmetry (5), as expected.
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and

ψs = Es
z = E0

(
ei(ky+π/4)

√
π

∫ ξ+η

0

e−iζ2

dζ − e−i(ky−π/4)

√
π

∫ ξ−η

0

e−iζ2

dζ − eiky + e−iky

2

)
. (21)

2.1.2 Electric Field Perpendicular to the Edge

In this case the current on the conducting screen are in the x-direction, so the scattered
electric field lies in the x-y plane, while both the incident and scattered magnetic field are
parallel to the edge. It is therefore convenient to consider the scalar wavefunction ψ = Bz =
E0 e

iky + ψs(x, y).
The analysis for ψs is similar to the preceding sec. 2.1.1, except, that the boundary

condition at the screen, Ex(x > 0, 0) = 0 implies that ∂Bz(x > 0, 0)/∂y = 0, i.e.,
∂Bs

z(x > 0, 0)/∂y = ∂Bs
z(ξ, 0)/∂y = −ikE0.

To perform the derivative of the integrals in eq. (13) we need the relations,

∂ξ

∂x
=

ξ

2r
,

∂η

∂x
= − η

2r
, (22)

∂ξ

∂y
=

η

2r
,

∂η

∂y
=

ξ

2r
. (23)

Using these, we find,

∂ψs(x > 0, 0)

∂y
= −ikE0 = ik(au − av) + (bu − bv)

(
ik

∫ ξ

0

e−iζ2

dζ +
k

2ξ
e−iξ2

)
, (24)

and hence,

au − av = −E0, bu = bv. (25)

Combining this with eq. (16) we find6

au = −av = −E0

2
, bu = bv =

E0√
π
eiπ/4, (27)

and,

ψs = Bs
z = E0

(
ei(ky+π/4)

√
π

∫ ξ+η

0

e−iζ2

dζ +
e−i(ky−π/4)

√
π

∫ ξ−η

0

e−iζ2

dζ − eiky − e−iky

2

)
. (28)

6In view of eq. (27), and recalling that the sign of ξ is taken to be the same as that of y, we have that,

ψs(x,−y) = au e
−iky + av e

iky + bu e
−iky

∫ −ξ+η)

0

e−iζ2
dζ + bv e

iky

∫ −(ξ+η)

0

e−iζ2
dζ

= −av e
−iky − au e

iky − bv e
−iky

∫ ξ−η

0

e−iζ2
dζ − bu e

iky

∫ ξ+η

0

e−iζ2
dζ

= −ψs(x, y). (26)

That is, ψs = Bs
z satisfies the symmetry (5), as expected.
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2.1.3 Asymptotic Behavior near the Geometric Shadow

To exhibit the well-known behavior of the fields near the edge of the geometric shadow (first
deduced by Fresnel in a scalar theory), it is convenient to recast the integrals in eqs. (21)
and (28) as running from ζ to ∞, using eq. (15),

∫ ζ

0

e−iζ2

dζ =

√
π

2
e−iπ/4 −

∫ ∞

ζ

e−iζ2

dζ. (29)

Then,

ψs

E0
= −e

i(ky+π/4)

√
π

∫ ∞

ξ+η

e−iζ2

dζ ± e−i(ky−π/4)

√
π

∫ ∞

ξ−η

e−iζ2

dζ ∓ e−iky. (30)

We consider these waves for large y = 2ξη/k ≈ 2ξ2/k ≈ 2η2/k and small x = (ξ2 − η2)/k ≈
(ξ − η)

√
2y/k, where the total wavefunction ψ = E0 e

iky + ψs has the form,

ψ

E0
≈ ±e

−i(ky−π/4)

√
π

∫ ∞
√

kx2/2y

e−iζ2

dζ + eiky ∓ e−iky ≈ ±e
−i(ky−π/4)

√
π

∫ ∞
√

kx2/2y

e−iζ2

dζ, (31)

where the second approximation follows noting that the integral varies more slowly with y
than the terms eiky ∓ e−iky, which can be represented by their average, namely zero. The
real and imaginary parts of the remaining integral are related to the Fresnel cosine and sine
integrals,

C(t) =

∫ t

0

cos
πs2

2
ds =

√
2

π

∫ √
π/2 t

0

cos s2 ds, S(t) =

∫ t

0

sin
πs2

2
ds =

√
2

π

∫ √
π/2 t

0

sin s2 ds,(32)

and the integral itself has the interpretation of the length of the chord on the Cornu spiral
[36] from (Sign(x)C(

√
2kx2/πy), Sign(x)S(

√
2kx2/πy)) to (0.5,0.5).

The plot on the right above (from [35]) shows ψ/E0 as a function of x for ky = 6π.
Illustrations of lines of constant phase, of constant intensity, and of the Poynting vector

are given in [37, 38].
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2.2 Arbitrary Angle of Incidence

Suppose the incident wave has the form eik(x sin α+y cosα), where −π/2 ≤ α ≤ π/2 is the angle
of incidence with respect to the −y axis. Then, the reflected wave in case of a complete
conducting screen at y = 0 would have the form eik(x sinα−y cosα). The brilliant “guess” of
Lamb (sec. 4 of [21]) is that the forms for the scattered wave found above for normal incidence
hold for arbitrary incidence with the modifications,

Es,‖
z = E0

ei(kx sinα+ky cosα+π/4)

√
π

∫ ξ1+η1

0

e−iζ2

dζ

−E0
ei(kx sinα−ky cosα+π/4)

√
π

∫ ξ2−η2

0

e−iζ2

dζ

−E0
eik(x sinα+y cosα) + eik(x sinα−y cos α)

2
, (E parallel to the edge), (33)

Bs,⊥
z = E0

ei(kx sinα+ky cosα+π/4)

√
π

∫ ξ1+η1

0

e−iζ2

dζ

+E0
ei(kx sinα−ky cosα+π/4)

√
π

∫ ξ2−η2

0

e−iζ2

dζ

−E0
eik(x sinα+y cosα) − eik(x sin α−y cosα)

2
. (E perpendicular to the edge),(34)

where

ξ1 =
√
kr cos

φ+ α

2
, η1 =

√
kr sin

φ+ α

2
, (35)

ξ2 =
√
kr cos

φ− α

2
, η2 =

√
kr sin

φ− α

2
, (36)

With some effort one can verify that these forms satisfy the boundary conditions at the
conducting half-plane screen.

A numerical computation of Ez and Bz for α = 30◦ is shown below.7 The incident wave
moves up and to the right, the first quadrant is the nominal shadow region, and the fourth
quadrant contains the standing-wave sum of the incident and reflected waves.

7Thanks to J.J. Ottusch,
http://puhep1.princeton.edu/~mcdonald/examples/EM/Ottusch/half-plane_diffraction_60_deg_incidence.mov
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2.3 Complementary Screen and Babinet’s Principle

If the (complementary) screen occupies the region (x < 0, y = 0) then it corresponds to ξ = 0.
That is, the role of coordinates ξ and η is reversed when we go from the original screen to the
complementary screen.8 This reversal has the effect of changing the sign constants bu and
bv in eq. (14), as well as that of the integrals with upper limits ξ − η. Hence, the scattered
fields in the complementary case are,

E ′s,‖
z = −E0

ei(kx sinα+ky cosα+π/4)

√
π

∫ ξ1+η1

0

e−iζ2

dζ

−E0
ei(kx sinα−ky cosα+π/4)

√
π

∫ ξ2−η2

0

e−iζ2

dζ

−E0
eik(x sinα+y cosα) + eik(x sin α−y cosα)

2
, (E parallel to the edge), (37)

B ′s,⊥
z = −E0

ei(kx sinα+ky cosα+π/4)

√
π

∫ ξ1+η1

0

e−iζ2

dζ

+E0
ei(kx sinα−ky cosα+π/4)

√
π

∫ ξ2−η2

0

e−iζ2

dζ

−E0
eik(x sinα+y cosα) − eik(x sinα−y cosα)

2
. (E perpendicular to the edge).(38)

The fields (33)-(34) and (37)-(38) illustrate Babinet’s principle for electromagnetic fields
[2, 3]),

Es,‖
z +B ′s,⊥

z = E0 e
ik(x sinα+y cosα), E ′s,‖

z +Bs,⊥
z = E0 e

ik(x sinα+y cosα). (39)

That is, the sum of the electric field of one polarization scattered by the one screen and the
magnetic field corresponding to the case of electric field of the other polarization scattered
by the complementary screen equals the incident field in the absence of the screen.

A Solution via Weber Functions

This Appendix is presently not very satisfactory.
The Helmholtz equation for a scalar wavefunction ψ(x, y) e−iωt that is independent of z

has the form,

∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ =

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2 + k2ψ =
∂2ψ

∂ξ2 +
∂2ψ

∂η2
+ 4(ξ2 + η2)ψ = 0, (40)

in parabolic cylinder coordinates (2).
Assuming that ψ = X(ξ)Y (η) leads to the differential equations,

d2X

dξ2 + 4ξ2X = −CX, d2Y

dη2
+ 4η2Y = CY, (41)

8Strictly, this statement holds only if we also adopt the convention that ξ is always positive, and the
sign of η is the same as the sign of y in the case of the complementary screen.
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where C is a separation constant.
Solutions to the differential equations (41) are so-called parabolic-cylinder functions, also

known as Weber functions [14, 15, 16, 39, 40, 41, 42],

X(ξ) = Dn(2ξ
√−i), D−n−1(2ξ

√
i), and Y (η) = Dn(2η

√−i), D−n−1(2η
√
i), (42)

where n is a non-negative integer (to which the separation constant C is related). Weber
functions for negative index are related to those with positive index by,

√
2π in+1

Γ(−n)
D−n−1(2ξ

√
i) = Dn(−2ξ

√−i) − (−1)nDn(2ξ
√−i). (43)

Setting n = −m− 1 we find that,

Dm(2ξ
√
i) =

im m!√
2π

(
D−m−1(−2ξ

√−i) + (−1)mD−m−1(2ξ
√−i)

)
, (44)

and hence for even m ≥ 0,

Dm(0)

D−m−1(0)
=

√
2

π
imm! (even m). (45)

Derivatives of Weber functions (for any n) obey,

dDn(z)

dz
=
z

2
Dn(z) −Dn+1(z) = −z

2
Dn(z) +Dn−1(z), (46)

which leads to the relations,

Dn+1(z) = −ez2/4d[e
−z2/4Dn(z)]

dz
, Dn(z) = ez2/4

∫ ∞

z

e−z2
0/4Dn+1(z0) dz0. (47)

For non-negative integer index n the Weber functions can be written as,

Dn(z) = (−1)n ez2/4d
n e−z2/2

dzn
= 2−n/2 e−z2/4Hn(z/

√
2) , D0(z) = e−z2/4, (48)

D−n−1(z) = ez2/4

∫ ∞

z

dz0

∫ ∞

z0

dz1 · · ·
∫ ∞

zn−1

e−z2
n/4 dzn, (49)

where Hn is a Hermite polynomial. Thus, Dn(−z) = (−1)nDn(z) and Dn(0) = 0 for odd
n > 0 and Dn(0) �= 0) for other n. Also,

D−1(z
√

2i) = eiz2/2

∫ ∞

z
√

2i

e−iz′2/2 dz′. (50)

An expansion for a plane wave (with no z-dependence) that propagates at angle φ0 to
the positive x-axis is [14, 16],

eik(x cosφ0+y sinφ0) =
1

cos φ0

2

∞∑
n=0

in tann φ0

2

n!
Dn(2ξ

√−i)Dn(2η
√
i), (51)

=
1

sin φ0

2

∞∑
n=0

cotn φ0

2

inn!
Dn(2ξ

√
i)Dn(2η

√−i). (52)
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For φ0 = 0 the wave moves in the +x direction and has the simple form,

eikx = eik(ξ2−η2)/2 = D0(ξ
√−2ik)D0(η

√
2ik), (53)

and similarly for φ0 = π, when the wave moves in the −x direction,

e−ikx = e−i(ξ2−η2) = D0(2ξ
√
i)D0(2η

√−i). (54)

For normal incidence on the screen the angle is φ0 = π/2 and the wave is,

eiky = ei2ξη =
√

2
∞∑

n=0

in

n!
Dn(2ξ

√−i)Dn(2η
√
i) =

√
2

∞∑
n=0

1

inn!
Dn(2ξ

√
i)Dn(2η

√−i). (55)

? I believe that the two series in eq. (55) are the complex conjugates of one another. If so,
eq. (55) cannot be correct. I have seen one version in which the factor in appears in the
numerators of both series.

According to sec. 16.5 of [41] or 19.3.1 and 19.8.1 of [42], the Weber functions for large
|z| � n (and x > 0) have the leading form9

Dn(z) ≈ zn e−z2/4, (56)

such that eq. (51)-(52) can be written for large ξ and η as,

eik(x cosφ0+y sinφ0)
?
=

eikx

cos φ0

2

∞∑
n=0

(2iky tan φ0

2
)n

n!
=
eik(x+2y tan

φ0
2

)

cos φ0

2

?
=
e−ik(x+2y cot

φ0
2

)

sin φ0

2

. (57)

Thus, it appears unlikely that the forms (51)-(52) are valid, in which case the results below
are not valid.10

When such a plane wave is incident on a parabolic cylinder, say of constant η, the
scattered wave has the form of an outgoing cylindrical wave at large distances. Consideration
of the asymptotic behavior of Weber functions [16] (see also [43]) suggests that the scattered
wavefunction ψs can be written as11

ψs =
∞∑

n=0

anDn(2ξ
√−i)D−n−1(2η

√−i) =
∞∑

n=0

bnD−n−1(2ξ
√−i)Dn(2η

√−i). (58)

In problem of scattering by a plane conducting screen it is often assumed that the scat-
tered fields obey certain symmetries with respect to change of sign of the distance from the
observer to the screen (see, for example, sec. 11.2 of [35]). For the geometry used here, this
corresponds to change of sign of y and ξ. Since Dn(−2ξ

√−i) = (−1)nDn(2ξ
√−i), these

symmetries will not hold in general in the present problem.

9Equation (56) agrees with eq. (48) noting that Hn(z) → (2z)n for large z. However, this agreement
requires a sign change in eq. (48) compared to eq. (11.2.68) of [16].

10In sec. 9 of [14] the limit n � |z|2 is considered, but the asymptotic forms used do not seem to me to
agree with 19.9.4 of [42] (or p. 403 of [40]), Dn(z) ≈ (−2i)n/2Γ(n/2) ei

√
n+1/2z/

√
π. It may be that 19.9.1

was used, which applies for negative n.
11I have not seen the second form of eq. (58) elsewhere. For large ξ and η eq. (56) implies

that Dn(2ξ
√−i)D−n−1(2η

√−i) → cotn φ
2 e

ikr/2
√−ikr sin φ

2 , and that D−n−1(2ξ
√−i)Dn(2η

√−i) →
tann φ

2 e
ikr/2

√−ikr cos φ
2 .
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A.1 Incident Electric Field Parallel to the Edge of the Screen

When the incident electric field has only a z-component, the resulting currents on the con-
ducting screen are in the z-direction, and the scattered electric filed has only a z-component.
We therefore take the scalar field component ψ to be Ez, such that the boundary condition
is that ψ = 0 on the surface of the screen (Dirchlet boundary condition).

For incident angle 0 ≤ φ0 < π/2 and incident wave amplitude E0, comparison of eq. (51)
and the first form of eq. (58) indicates that for scattering off a conducting parabolic cylinder
of coordinate η0,

an = −E0

in tann φ0

2

n! cos φ0

2

Dn(2η0

√
i)

D−n−1(2η0

√−i) , (59)

Going to the limit of a knife edge, we are interested in the case that η0 = 0, for which
Dn(0) = 0 for odd n. Recalling eq. (45), the total electric field (for incident angle 0 ≤ φ0 <
π/2) is the sum of the incident and scattered fields,

Ez = Ei
z + Es

z , (60)

Ei
z = E0 e

ik(x cosφ0+y sinφ0), (61)

Es
z = −

√
2

π

E0

cos φ0

2

∑
n even

(−1)n tann φ0

2
Dn(2ξ

√−i)D−n−1(2η
√−i). (62)

The scattered field Es
z obeys the symmetry advocated by Born and Wolf [35] that Es

z(−y) =
Es

z(y), i.e. that Es
z(−ξ) = Es

z(ξ), as only terms with even n appear in eq. (62).
The magnetic field is related to the electric field by Faraday’s law,

B = − i

k
∇× E, (63)

where the curl of a vector V is given in parabolic-cylindrical coordinates by

∇ ×V =
k

2
√
ξ2 + η2

⎛
⎝∂Vz

∂η
− 2

k

∂
(√

ξ2 + η2 Vη

)
∂z

⎞
⎠ ξ̂

+
k

2
√
ξ2 + η2

⎛
⎝2

k

∂
(√

ξ2 + η2 Vξ

)
∂z

− ∂Vz

∂ξ

⎞
⎠ η̂

+
1

ξ2 + η2

(
∂ [(ξ2 + η2)Vη]

∂ξ
− ∂ [(ξ2 + η2)Vξ ]

∂η

)
ẑ, (64)

noting that the scale factors are hξ = hη = (2/k)
√
ξ2 + η2, hz = 1. Thus,

B = − i

2
√
ξ2 + η2

(
∂Ez

∂η
ξ̂ − ∂Ez

∂ξ
η̂

)
. (65)

11



A.1.1 Normal Incidence

For normal incidence, φ0 = π/2, the forms (60)-(62) simplify slightly to,

Ei
z = E0 e

iky, (66)

Es
z = − E0√

π

∑
n even

(−1)nDn(2ξ
√−i)D−n−1(2η

√−i), (67)

the latter equation of which is still rather intricate. So far I have not found reference to
any asymptotic expansions for complex argument of large absolute value, so the solutions
presented here are more of formal than practical interest. However, these formal solutions
provide counterexamples to certain lore about scattering from plane screens, as remarked
elsewhere in this note.

A somewhat different approach to this case was taken by Morse and Feshbach [16], who
considered an incident wave in the +x direction, eq. (53), and a conducting screen along the
negative y-axis, where ξ = −η. In this case they found the scattered electric field to be,

Es
z = − 1√

2π

[
D0(2ξ

√−i)D−1(2η
√−i) +D−1(2ξ

√−i)D0(2η
√−i)

]
. (68)

Yet another approach was taken by Lamb [21], who is his sec. 3 made the educated guess
that for the electric field polarized parallel to the edge of the screen, the scatter field ψs = Es

z

obeys,

∂ψs

∂x
= C

eikr

√
kr

sin
φ

2
, (69)

which he deftly integrated to find,

ψs

E0
=

1 − i√
2π

(
e−iky

∫ ξ+η

0

e−iζ2

dζ − eiky

∫ ξ−η

0

e−iζ2

dζ

)
− eiky + e−iky

2
. (70)

A.1.2 Complementary Screen

If the conducting screen occupied the half plane (x < 0, 0, z) it would have coordinate ξ = 0.
Comparison of eq. (52) and the second form of eq. (58) indicates that for scattering off a

conducting parabolic cylinder of coordinate ξ0,

bn = − cotn φ0

2

inn! sin φ0

2

Dn(2ξ0

√
i)

D−n−1(2ξ0

√−i) . (71)

Going to the limit of a knife edge, we are interested in the case that ξ0 = 0, for which
Dn(0) = 0 for odd n. The total electric field (for incident angle 0 ≤ φ0 < π/2) is,

E ′
z = Ei

z + E ′s
z , (72)

E ′s
z = −

√
2

π

E0

sin φ0

2

∑
n even

cotn φ0

2
Dn(2ξ

√
i)D−n−1(2η

√
i). (73)
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A näıve application of Babinet’s principle of complementary screens [1] to the present
problem would suggest that Ez +E ′

z = Ei
z for y > 0, which does not appear to be consistent

with eqs. (61)-(63) and (73). To explore whether the electromagnetic version of Babinet’s
principle [2, 3] holds here, we need to consider the case of incident electric field polarized
perpendicular to the z-axis.

A.2 Incident Electric Field Perpendicular to the Edge of the Screen

In this case the incident magnetic field (as well as the scattered magnetic field) is parallel to
the edge of the screen, i.e., the z-axis, and we take the scalar field ψ to be Bz. The tangential
component of the electric field must vanish at the surface of the perfectly conducting screen,
and the fourth Maxwell equation tells us that at the screen Ex = 0 ∝ ∂Bz/∂y. For conduct-
ing screens that are surfaces of constant η0 (or of constant ξ0), the (Neumann) boundary
conditions are,

∂Bz(η0)

∂ξ
= 0

(
or

∂Bz(ξ0)

∂η
= 0

)
. (74)

For incident angle 0 ≤ φ0 < π/2 we again take the incident field to have the form (51)
and the scattered field to have the first form of eq. (58). For a screen of constant η0 the
normal derivatives of the incident and scattered fields are,

∂Bi
z

∂ξ
=

2E0

√−i
cos φ0

2

∞∑
n=0

in tann φ0

2

n!
D′

n(2ξ
√−i)Dn(2η0

√
i), (75)

∂Bs
z

∂ξ
= 2

√−i
∞∑

n=0

anD
′
n(2ξ

√−i)D−n−1(2η0

√−i), (76)

where D′
n(z) = dDn(z)/dz. The boundary condition (74) again leads to Fourier coefficients

an as given by eq. (59), so the magnetic field for the case of a conducting screen with η0 = 0
is given by,

Bz = Bi
z +Bs

z , (77)

Bi
z = E0 e

ik(x cosφ0+y sinφ0), (78)

Bs
z = − E0

cos φ0

2

∞∑
n=0

in tann φ0

2

n!

Dn(0)

D−n−1(0)
Dn(2ξ

√−i)D−n−1(2η
√−i)

= −
√

2

π

E0

cos φ0

2

∑
n even

(−1)n tann φ0

2
Dn(2ξ

√−i)D−n−1(2η
√−i). (79)

The scattered field Bs
z does not obey the symmetry advocated by Born and Wolf [35] that

Bs
z(−y) = −Bs

z(y), i.e. that Bs
z(−ξ) = −Bs

z(ξ), as only terms with even n appear in eq. (79).
That the symmetry would not hold when the electric field is perpendicular to the edge of
the screen was anticipated in [34]. Another counterexample is given in sec. 3.2 of [20].

The form (79) is symmetric in ξ (and hence in y), which is somewhat surprising. Is this
a hint of a defect in the present analysis?
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A.2.1 Complementary Screen

If the conducting screen occupied the half plane (x < 0, 0, z) it would have coordinate ξ = 0.
For incident angle 0 ≤ φ0 < π/2 we now take the incident field to have the form (52)

and the scattered field to have the scattered form of eq. (58). For a screen of constant ξ0 the
normal derivatives of the incident and scattered fields are,

∂B ′i
z

∂η
=

2E0

√−i
sin φ0

2

∞∑
n=0

cotn φ0

2

inn!
Dn(2ξ0

√
i)D′

n(2η
√−i), (80)

∂B ′s
z

∂η
= 2

√−i
∞∑

n=0

bnD−n−1(2ξ0

√−i)D′
n(2η

√−i). (81)

Comparison of eq. (52) and the second form of eq. (58) indicates that for scattering off a
conducting parabolic cylinder of coordinate ξ0,

bn = − cotn φ0

2

inn! sin φ0

2

Dn(2ξ0

√−i)
D−n−1(2ξ0

√−i) . (82)

Going to the limit of a knife edge, we are interested in the case that ξ0 = 0, for which
Dn(0) = 0 for odd n. The total magnetic field (for incident angle 0 ≤ φ0 < π/2) is,

B ′
z = Bi

z +B ′s
z , (83)

B ′s
z = −

√
2

π

E0

sin φ0

2

∑
n even

cotn φ0

2
D−n−1(2ξ

√−i)Dn(2η
√−i). (84)

A.3 Electromagnetic Version of Babinet’s Principle

The electromagnetic version of Babinet’s principle [2, 3] is that,

E(y > 0) + B′(y > 0) = Ei(y > 0), B(y > 0) − E′(y > 0) = Bi(y > 0), (85)

where the plane conducting screen (with y = 0) associated with the fields E′ and B′ is the
complement of that for the fields E and B, and the incident fields in the complementary case
are the duals,12

E′i = −Bi, B′i = Ei. (86)

In the present case this implies that B′i = Ei = E0 e
ik(x cosφ0+y sinφ0) ẑ, as considered in

sec. 2.2.1.
It appears to me implausible that Babinet’s principle (85) is satisfied by eqs. (60)-(62)

and (83)-(84).

12See, for example, sec. 2.1 of [3].
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A.3.1 Normal Incidence

The argument given in sec. 5.3.3 of [44] is fairly convincing that Booker’s electromagnetic
version of Babinet’s principle should hold for plane waves at normal incidence on screens
with all edges parallel to one rectangular coordinate axis, as in Sommerfeld’s problem. For
normal incidence with the incident electric field polarized parallel to the z-axis, we have from
eq. (62) that,

Es
z = −2E0√

π

∑
n even

(−1)nDn(2ξ
√−i)D−n−1(2η

√−i), (87)

and from eq. (84) that,

B ′s
z = −2E0√

π

∑
n even

D−n−1(2ξ
√−i)Dn(2η

√−i). (88)

The electromagnetic version of Babinet’s principle would be satisfied if,

eiky =
2√
π

∑
n even

(
(−1)nDn(2ξ

√−i)D−n−1(2η
√−i) +D−n−1(2ξ

√−i)Dn(η
√−i)

)
. (89)

If eq. (55) is correct we can say that,

eiky =

√
2

2

∞∑
n=0

in

n!

(
Dn(2ξ

√−i)Dn(2η
√
i) + (−1)nDn(2ξ

√
i)Dn(2η

√−i)
)
. (90)

It is not clear to me that eqs. (89) and (90) are equal. If eq. (89) is to be correct, it seems
likely that there exist alternatives to the plane-wave expansions of eqs. (51-(52).
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[14] P.S. Epstein, Über die Beugung an einem ebenen Schirm unter Berücksichtigung des
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