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1 Problem

Deduce the strength of the lowest mode of a rectangular electromagnetic cavity when excited
by a relativistic electron of charge −e and speed v ≈ c, where c is the speed of light in vacuum.
The rectangular cavity has dimensions dx ≥ dy ≥ dz, and the electron moves parallel to the
z-axis. The cavity walls may be taken as perfect conductors, and the interior of the cavity
is vacuum.

2 Solution

To a good approximation, the fields excited in the cavity by a passing, relativistic charge are
independent of the possible prior presence of fields in the cavity. If such fields are present, the
electron will gain (or lose) energy as it traverses the cavity, but its trajectory is essentially
unchanged if v ≈ c. Then, the energy gained by the electron is equal and opposite to the
change in the electromagnetic field energy of the cavity due to the additional excitation of
the cavity [1]. From this, we can deduce the strength of the excitation due to the electron.

Our argument is a kind of reciprocity relation: the energy of excitation of a mode of a
cavity by an electron is related to the (maximum) energy that mode, if previously excited,
can transfer to the electron.

2.1 E and B Fields of the Cavity Modes

The cavity has extent 0 < x < dx, 0 < y < dy, and 0 < z < dz. The electric field must be
everywhere perpendicular to the (perfectly conducting) walls, such that for time dependence
e−iωt there exists a set of modes with non-negative integer indices {l, m, n} of the form,

Ex = E0 ex cos kxx sin kyy sin kzz e−iωt, (1)

Ey = E0 ey sin kxx cos kyy sin kzz e−iωt, (2)

Ez = E0 ez sin kxx sin kyy cos kzz e−iωt, (3)

where ê = (ex, ey, ez) is a unit vector, the wave vector k is given by,

k = (kx, ky, kz) = π

(
l

dx

,
m

dy

,
n

dz

)
, (4)
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and at most only one of indices l, m, or n is zero (see, for example, [2]). These fields obey
the free-space wave equation,

∇2E =
1

c2

∂2E

∂t2
= −ω2

c2
E, (5)

where c is the speed of light in vacuum, which implies that,

ω = kc = πc

√
l2

d2
x

+
m2

d2
y

+
n2

d2
z

. (6)

The first (free-space) Maxwell equation, ∇ · E = 0 implies that ê · k = 0, so that there are
two orthogonal “polarizations” ê for each set of indices {l, m, n}.1

The magnetic field is related to the electric field by Faraday’s law (in Gaussian units),

∇× E = −∂B

∂ct
= ikB, (8)

such that,

Bx = iE0 bx sin kxx cos kyy cos kzz e−iωt, (9)

By = iE0 by cos kxx sin kyy cos kzz e−iωt, (10)

Bz = iE0 bz cos kxx cos kyy sin kzz e−iωt, (11)

where b̂ is the unit vector,

b̂ = ê× k̂ =
1

k
(eykz − ezky, ezkx − exkz, exky − eykx). (12)

The magnetic field is everywhere tangential to the walls of the cavity (which motivated the
use of the cosine functions in the electric field (1)-(3)). Thus, b̂ · k ∝ det(ê,k,k) = 0,
consistent with the third Maxwell equation, ∇ · B = 0. Also, ê · b̂ ∝ det(ê, ê,k) = 0, such
that for each mode the vectors E, B and k form a mutually orthogonal triad, with,

ê = b̂× k̂ =
1

k
(bykz − bzky, bzkx − bxkz , bxky − bykx). (13)

The lowest cavity mode (often called TM110) has indices (l, m, n) = (1, 1, 0), wave vector,

k = π

(
1

dx
,

1

dy
, 0

)
, k =

ω

c
=

π
√

d2
x + d2

y

dxdy
, (14)

1The electric field can be regarded as the superposition of eight plane waves,

E = −E0

8

[
(ex, ey, ez) ei(kxx+kyy+kzz−ωt) + (−ex, ey, ez) ei(−kxx+kyy+kzz−ωt)

−(ex,−ey, ez) ei(kxx−kyy+kzz−ωt) + (−ex,−ey, ez) ei(−kxx−kyy+kzz−ωt)

−(ex, ey,−ez) ei(kxx+kyy−kzz−ωt) − (−ex, ey,−ez) ei(−kxx+kyy−kzz−ωt)

+(ex,−ey,−ez) ei(kxx−kyy−kzz−ωt) + (−ex,−ey,−ez) ei(−kxx−kyy−kzz−ωt)
]
, (7)

with a similar relation holding for the magnetic field.
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electric polarization unit vector e = (0, 0, 1), magnetic polarization unit vector,

b =
π

k

(
1

dy
,− 1

dx
, 0

)
. (15)

The electric field of the lowest mode is,

Ex = Ey = 0, Ez = E0 sin kxx sin kyy e−iωt, (16)

and the stored electromagnetic energy is,

U =

∫ |E|2 + |B|2
16π

dVol =

∫ |E|2
8π

dVol =
E2

0dxdydx

32π
. (17)

2.2 Maximum Energy Gain by a Passing, Relativistic Electron

We suppose that the electron moves parallel to the z-axis and reaches the midplane of the
cavity z = dz/2, when the electric field is minimal, E(x, y) = −E0 sin kxx sin kyy at the x-y
position of the electron. The transit time of the relativistic electron is Δt = dz/c, so the
maximum energy gain of the electron is,

ΔU = −eE(x, y)

∫ dz/2c

−dz/2c

cosωt cdt =
2ceE0

ω
sin kxx sin kyy sin

ωdz

2c

=
2eE0

k
sin kxx sin kyy sin

kdz

2
. (18)

2.3 Excitation of the Lowest Mode by the Electron

As the electron passes through the cavity it leads to time-dependent charges and currents
on the interior surface of the cavity, which generates additional electromagnetic fields (some-
times called transition radiation or wakefields). These fields can be decomposed as a sum
of the modes of the cavity, including the lowest mode. Of course, the total field inside the
cavity is the sum of the excited modes and the initial field in the lowest mode. The total
energy in the cavity is the sum of the electromagnetic energies in the various (orthogonal)
modes.

We assume that the initial field in the lowest mode is much larger than the strengths
of the various excitations by the electron. In this approximation, the total field energy in
the cavity is just the initial energy plus the “interference” energy between the initial lowest
mode and the further excitation of this mode by the electron. Then, the energy (18) gained
(18) by the electron must be equal and opposite to the interference energy.

Denoting the electric field of the lowest mode as excited by the electron by,

ΔU = −eE(x, y)

∫ dz/2c

−dz/2c

cosωt dt = Eex sin kxx sin kyy e−iωt, (19)

where Ex is a complex number, then the interference energy is,

Uint =

∫
E0Re(Eex) sin2 kxx sin2 kyy

4π
dVol =

E0Re(Eex) dxdydz

16π
. (20)
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Equating this to the negative of eq. (18), we have that,

Re(Eex) = − 32πe

kdxdydz
sin kxx sin kyy sin

kdz

2
= − 32e√

d2
x + d2

ydz

sin kxx sin kyy sin
kdz

2
. (21)

This result is independent of the initial field E0, and must hold even if E0 = 0.
In principle, the imaginary part of Eex is not determined, but the spirit of the present

argument is that there is no physical role for the imaginary part, so I assume it is negligible.
That is, the magnitude of the excitation of the lowest mode by the passing electron is,

Eex =
32πe

kdxdydz

∣∣∣∣sin kxx sin kyy sin
kdz

2

∣∣∣∣ =
32e√

d2
x + d2

y dz

∣∣∣∣sin kxx sin kyy sin
kdz

2

∣∣∣∣ . (22)

This problem has been considered by a very different approach in sec. 14.2 of [3],2 for
the particular case that dx = dy ≡ a = λ/

√
2 and dz ≡ b = λ/2, with x = y = a/2

√
2. For

this case, eq. (22) gives Eex = 64e/λ2, and the energy of this excitation is (recalling eq. (17))
Uex = 32e2/πλ, in agreement with eq. (14.76) of [3].

As discussed in [1], the excitation of other low modes of the cavity by the electron results
in fields of similar order to that of eq. (22). If we are interested in the excitation of a
particular mode, we can first suppose that the cavity has an initial field in this mode only,
calculate the energy gain by the passing electron, and deduce the excitation of this mode by
equating the final interference energy to the negative of the energy gain. We see that if a
mode does not result in an energy gain by a passing electron, there will be no excitation of
this mode by the passing electron.

For modes whose force on the electron is only transverse to its trajectory, we can calculate
the impulse ΔP⊥ of transverse momentum imparted to the electron of initial total energy U0,
and deduce the (small) change in the electron’s energy as ΔU ≈ c2ΔP 2

⊥/2U0. This contrasts
with the case of an impulse ΔP‖ along the electron’s velocity, for which the energy gain is
ΔU ≈ cΔP‖. Since ΔP ∝ E0, the strength of the excitation of a mode that only gives a
transverse “kicks” to a passing electron varies as the initial strength E0 of that mode, such
that if this mode is not initially present it will not be excited by the electron. It remains
that a mode such as that with indices (l, m, n) = (1, 1, 1) that gives both longitudinal and
transverse “kicks” to a passing electron will be excited even if not initially present, and could
then impart transverse “kicks” to subsequent electrons.3

2The calculation of [3] proceeds via use of the vector potential for the cavity in the Lorenz gauge. While
I believe the result of their argument to be correct, it seems to me that the vector potential used there is
not, strictly speaking, the Lorenz-gauge potential. For further discussion, see sec. 2.2.3 of [2].

3I believe that for the (1, 1, 1) mode eq. (22) would be modified by replacing the factor sin kdz/2 with,

k2

2(k2 − k2
z)

sin
kdz

2
(1 + cos kzdz) − kkz

2(k2 − k2
z)

cos
kdz

2
sin kzdz. (23)

For the particular example of sec. 14.2 of [3], the excitation of the (1,1,1) mode is 0.86 times that of the
(1,1,0) mode.

4



2.4 Excitation While the Charge Is Inside the Cavity

The analysis of secs. 2.2-3 holds only after the charge has exited the cavity. If we suppose
the charge enters the cavity at time t = 0, then the energy it has gained by time t is,

ΔU(t) = −eE(x, y)

∫ t

0

cos ω(t− dz/2c) cdt =
ceE0

ω
sin kxx sin kyy

(
sinω(t − dz/2c) + sin

kdz

2

)

=
eE0

k
sin kxx sin kyy

(
sin ωt cos

kdz

2
+ (1 + cos ωt) sin

kdz

2

)
. (24)

This energy gain is balanced by a reduction of the field energy in the cavity. We could proceed
as in sec. 2.3 and identify the strength of the mode as that for which the interference energy
is the negative of eq. (24),

Eex(t) ≈ 16e√
d2

x + d2
y dz

sin kxx sin kyy

(
sinωt cos

kdz

2
+ (1 − cosωt) sin

kdz

2

)
. (25)

This result depends on the tacit assumption that even when the charge is still inside
the cavity the electromagnetic fields can be represented as a sum of orthogonal modes. The
contribution to the fields from the charge occupy only a sphere of radius ct about the entry
point of the charge (which entered at time t = 0). To represent this sphere of fields by a
sum of modes requires contributions of modes of arbitrarily high frequency.

However, metal cavities are transparent to waves of frequency above the plasma frequency,
which is in the far UV (about 16 eV for copper, I believe). This high-frequency cutoff implies
that the result (25) is only an approximation.

2.5 High-Frequency Cutoff

The procedure of secs. 2.2-3 can be applied to any mode, and if that mode can transfer
energy to a passing electron, the electron will excite that mode. Since the number of modes
is infinite, this suggests that a single electron might transfer an infinite energy to the cavity,
as claimed in sec. 3.3 of [11]. However, an electron cannot transfer more than its kinetic
energy to the cavity, so there must be a cutoff for higher-order (higher-frequency) modes.

To get a sense of this cutoff, it is useful to consider how the electron transfers energy
to the cavity, which is via its transition radiation, i.e., the radiation associated with the
time-dependent surface charge distribution induced on the cavity walls when the electron
is inside the cavity. Useful insight into transition radiation (and other radiation processes
of relativistic charges) is obtained in the Weizsäcker-Williams approximation, which can be
summarized [4] as: α photons are radiated per formation length L0(ω) per unit bandwidth,
up to a critical (angular) frequency ωC ,

dnω

dl
≈ α

L0(ω)

dω

ω
×

⎧⎨
⎩ 1 (ω < ωC),

e−ω/ωC (ω ≥ ωC),
(26)

where α ≈ 1/137 is the fine-structure constant. The critical frequency arises because there
will always be some minimum impact parameter, bmin between the passing charge and the

5



medium that it perturbs, below which radiation is suppressed. For a charge with Lorentz
factor γ = 1/

√
1 − v2/c2, the critical frequency is given by,

ωC ≈ γ
c

bmin
, bmin ≈ γλC , (27)

which reflects that the transverse scale of the electric field of a relativistic charge varies with
γ.4 The formation length is the distance over which a photon moves ahead of the charge by
one wavelength, and so depends on the angle and frequency of the photon,5

L0 ≈ 2λ

θ2 + 1/γ2
L0 ≈ γ2λ (λ ≈ λC). (28)

The minimum relevant transverse scale, bmin, for transition radiation is the plasma wave-
length λp = c/ωp, so the critical frequency is ωC ≈ γωp, according to eq. (27). This is well
into the x-ray regime (�ωp ≈ 16 eV for copper).6 Hence, the total energy Urad of transition
radiation by a passing charge in a cavity of length L > L0 is,

Urad ≈
∫ ωC

0

�ω
2α dω

ω
= 2α�ωC = 2γα�ωp (≈ 0.24γ eV for copper), (29)

adding the energies of the transition radiation at the entrance and exit surfaces of the cavity.

A Appendix: Right Circular Cylinder Cavity

The modes of a right circular cylinder cavity may be characterized as transverse electric
(TE) or transverse magnetic (TM) as described, for example, in sec. 8.7 of [7]. The field
patterns of a few of the lowest modes are sketched below (from [8]).

The lowest mode, TM010, for a cavity of radius R, with the z-axis being that of the cavity,
has fields in cylindrical coordinates (r, φ, z),

Ez = E0 J0(kr) e−iωt, (30)

Bφ = −iE0 J1(kr) e−iωt, (31)

where the resonant frequency is,

ω = kc =
2.405c

R
, (32)

such that J0(kR) = 0 so the tangential electric field is zero at r = R, and c is the speed of
light in vacuum. The magnetic field is related to the electric field by Faraday’s law,

∇× E = −∂B

∂ct
= ikB. (33)

4See, for example, sec. 1 of [4].
5See, for example, sec. 1.1 of [4].
6While the characteristic angle of transition radiation is 1/γ, there is only a power-law falloff at larger

angles, and the optical transition radiation from an intense beam of charged particles can be used to measure
the spot size to accuracy of a few optical λ [5, 6].
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The energy stored in the TM010 mode of a cavity of axial length L is,

U =

∫ |E|2 + |B|2
16π

dVol =

∫ |E|2
8π

dVol =
E2

0L

4

∫ R

0

J2
0 (kr) rdr =

E2
0LR2

4

∫ 1

0

J2
0 (kRx)xdx

=
E2

0LR2J2
1 (kR)

8
, (34)

using 6.521.1 of [9].7

An electron that passes through the cavity at radius r at speed v ≈ c gains a maximum
energy,

ΔU = −eE(r)

∫ L/2c

−L/2c

cos ωt cdt =
2ceE0J0(kr)

ω
sin

ωL

2c

=
2eE0J0(kr)

k
sin

kL

2
, (36)

recalling the argument of sec. 2.2

7The time-average energy stored in the magnetic field equals that stored in the electric field, so we infer
that, for J0(kR) = 0,

∫ R

0

J2
0 (kr) rdr =

∫ R

0

J2
1 (kr) rdr. (35)
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The interference energy associated with the additional excitation of the TM010 mode is,
following sec. 2.3 and using eq. (34),

Uint =
E0EexLR2J2

1 (kR)

4
, (37)

Equating this to the eq. (36), we have that the magnitude of the excited electric field is,

Eex =
8eJ0(kr)

(kR)LRJ2
1 (kR)

∣∣∣∣sin kL

2

∣∣∣∣ =
12.3eJ0(kr)

LR

∣∣∣∣sin kL

2

∣∣∣∣ , (38)

noting that J1(2.405) = 0.519.
The excitation of cylindrical cavities has been extensively considered for particle accel-

erators. See, for example, [10, 11], which uses a Green-function method due to Condon [12]
(that appears to be very similar to the method of Schwinger [3]). Equation (38) is, I believe,
the same as eq. (A8) (in SI units) of [10] with p = 0, g = L, r = 0 and ct > g; i.e., for times
after the charge has exited the cavity.

Modes that can deflect electrons transversely, such as TM110 shown below, give no net
axial acceleration to an axially symmetric beam of electrons (increasing the energy of elec-
trons at some azimuths while decreasing the energy at others). Hence, the excitation of these
modes by such a beam is negligible.

If a bunch of n electrons passes through the cavity such that all lengths scales of the
bunch are small compared to the wavelength of a mode, then the excitations of the various
electrons add coherently. As an example (taken from the accelerating cavities of a so-called
neutrino factory [13]), we consider a bunch of n = 1012 muons passing through a right circular
cavity with L = 30 cm, R = 15 cm, for which the excitation of the fundamental mode, with
kR = kL/2 = 2.405, has Eex ≈ 5.4 × 105 V/m, noting that in SI units eq. (38) includes a
factor 1/4πε0 ≈ 9 × 10−11.
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