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Abstract

This paper calculates and explores the electric potentials of wire grids1 sandwiched be-
tween conducting planes, using the technique of conformal mapping. The initial inspiration
for the problem arose from some questions about the potential of wire grids placed in drift
chamber particle detectors[B, BR, M]. What voltage should we apply to a certain grid to
capture drifting electrons on it? What voltage should we apply to let the electrons pass
through? Herein, we first describe the general technique of using conformal maps to find
electric potentials. Then we find the potentials of some generalized grids, and describe the
accuracy of approximations we might use for infinite grids. Finally, we apply our methods
to attempt to model the grids of a real drift chamber.
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1 Harmonic and holomorphic functions

It is well-known2 that the real and imaginary parts of a holomorphic (analytic) function3

f(z) are harmonic. Indeed, writing f(z) = u(z) + i v(z), with z = x + iy, f is holomorphic
if and only if the Cauchy-Riemann Equations

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
(2)

are satisfied. But then we get

4u =
∂2u

∂x2
+

∂2u

∂y2

=
∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v

∂x

)
.

And, assuming that u and v are twice continuously differentiable,4 we have

4u =
∂2v

∂x∂y
− ∂2v

∂x∂y
= 0. (3)

A corresponding result holds for v.
Now consider a (real-valued) harmonic function h(z) on the complex plane, 4h = 0, and

a holomorphic function f(z). It can be shown that it is possible to construct a real-valued
function j(z) such that h + ij is holomorphic; i.e. there exists a holomorphic function g(z)
such that h = <(g). If we take this g and compose it with our initial holomorphic function f ,
we obtain another holomorphic function g ◦ f . But we know then that <(g ◦ f) = h ◦ f must
be harmonic. In other words, a harmonic function composed with a holomorphic function is
again harmonic.

1.1 The utility of conformal maps

The above observation characterizes the use of holomorphic bijections (i.e. conformal maps)
in finding harmonic functions. For suppose we are seeking a harmonic function u in a two-
dimensional region Ω which satisfies certain boundary conditions on ∂Ω, say u|∂Ω = U . If
f : Ω → Ω′ is conformal, and h(z) is harmonic in Ω′, then h ◦ f(z) will be harmonic in Ω.
If in addition h is such that h|f(∂Ω) = U , then h ◦ f will also satisfy the needed boundary
conditions. So u = h ◦ f is our harmonic function in Ω.

2Many of the “facts” stated here are taken from [SS], an excellent source on complex analysis.
3A complex-valued function is holomorphic if the derivative

lim
h→0

f(z + h)− f(z)
h

(1)

exists for all complex h. This is equivalent to f being analytic, i.e. expressible as a convergent Taylor series.
4This does follow from the fact that f is holomorphic, thus infinitely differentiable.
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This technique is mainy useful when we are dealing with a complicated region Ω which
can be conformally mapped to a much simpler region Ω′. Granted, the Riemann Mapping
Theorem guarantees that any two regions (with the same connectivity) may be conformally
mapped to one another. But generally we are only interested in maps that take simpler,
explicit forms, so that we may actually carry out calculations with them.

Also, note that this technique only works in two dimensions. If we want to use conformal
maps to find an electric potential, we can only work with three-dimensional regions which
are translationally invariant along some axis (cylindrical regions).

2 The potential of a charged wire between two grounded

conducting planes

We will now use conformal maps to try to find the potential of a grid of infinitely thin wires
sandwiched between two infinite conducting planes. We begin with a single wire, as in Fig. 1,
and then use superposition to add more. The two parallel planes are a distance b apart, and
the wire is a distance d above the bottom plane. We assume the wire carries charge λ per
unit length, and (for now) that the two planes are both grounded. On the complex plane,
we can place the bottom plane on the x axis, the wire at the point id, and the top plane on
the line y = =(z) = b.

Figure 1: One wire between two conducting planes

We would like to conformally map the infinite region between the planes to a finite, more
manageable, one. We begin with the map z 7→ πz

b
, which scales the strip to have thickness

π. Then we apply z 7→ ez. Since ez = ezeiy, the radius of image points will range between
e−∞ = 0 and e∞ = ∞ while their angle will range between 0 and π, the thickness of the
strip. So this maps the strip to the upper half plane, taking the top plate to the positive x

axis and the bottom plate to the negative x axis. Finally, we use z 7→ z − i

z + i
. Notice that

∣∣∣∣
z − i

z + i

∣∣∣∣ =
|z − i|

|z − (−i)| ≤ 1

for any point z in the upper half plane, so this map takes the upper half plane into the unit
disk. For points on the x axis, we have |z − i| = |z − (−i)|; so the x axis is mapped to
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the unit circle. Indeed, this is a conformal map from the upper half plane to the entire unit
disk.5 Composing these three maps we obtain

f(z) =
e

πz
b − i

e
πz
b + i

, (4)

a conformal map that takes our strip to the unit disk, and the top and bottom plates to the
unit circle.

What about our wire? Well, the wire is taken to the point f(id) inside the disk. The
potential of a charged wire in free space is

Vf (r) = −2λ log r (5)

(in Gaussian units), where r is the perpendicular distance from the wire. If the wire is right
in the center of a grounded conducting cylinder or radius R, then we may subtract a constant
from Vf to force the potential to be 0 on the cylinder:

Vs(r) = −2λ(log r − log R) = 2λ log

(
R

r

)
. (6)

(Notice that can look at this in complex coordinates with the wire at the origin of the
complex plane and r = |z|.) If the wire is at an arbitrary point ζ = ρeiφ inside a conducting
cylinder of radius R then we may use the method of images to find its potential. Placing an

image wire of charge −λ at ζ ′ =
R2

ρ
eiφ = R2ζ

−1
we find that

Va(z; ζ) = −2λ log |z − ζ| − (−2λ) log |z −R2ζ
−1|+ C

= −2λ log

∣∣∣∣∣
z − ζ

z −R2ζ
−1

∣∣∣∣∣ + C

= −2λ log




(
z − ζ

z −R2ζ
−1

)(
z − ζ

z −R2ζ
−1

)


1
2

+ C

= −λ log

[(
z − ζ

z −R2ζ
−1

)(
z − ζ

z −R2ζ−1

)]
+ C, (7)

where C is chosen so that Va(Reiθ; ζ) = 0. To actually find C, write ζ = ρeiφ. Then
(

z − ζ

z −R2ζ
−1

) (
z − ζ

z −R2ζ−1

)
=

|z|2 + |ζ|2 − 2<[zζ]

|z|2 + R4|ζ|−2 − 2R2<(z/ζ)

=
R2 + ρ2 − 2<(Re−iθρeiφ)

R2 + R4ρ−2 − 2R2<(Reiθ/(ρeiφ))

=
ρ2

R2

(
R2 + ρ2 − 2Rρ cos(θ − φ)

ρ2 + R2 − 2Rρ cos(θ − φ)

)

=
ρ2

R2
. (8)

5To actually prove this fact (that the map is a bijection), we could come up with the inverse function,
which takes the disk into the upper half plane.
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So C = λ log(ρ2/R2) = λ log(|ζ|2/R2) and the full expression may be written as

Va(z; ζ) = −λ log

[
R2

|ζ|2
(

z − ζ

z −R2ζ
−1

)(
z − ζ

z −R2ζ−1

)]

= −λ log

[(
z − ζ

zζ −R2

) (
z − ζ

zζ −R2

)]
. (9)

Note that this final form does reduce to Vs(z) when ζ = 0.
This formula gives us an expression for the potential of a charged wire inside a grounded

conducting cylinder or radius R; it of course is harmonic. So if we use f to map our original
strip (along with the wire) to the unit disk and then use Va with R = 1 to give us the
potential there, we should get an expression for the potential in the strip:

V (z; ζ) = Va(f(z); f(ζ)), (10)

where ζ is the (complex) coordinate of the wire in the strip (in the case of the single wire,
ζ = id). By our construction of Va and the mapping properties of f we see that this satisfies
both the boundary condition at the wire and the condition that V = 0 on the grounded
conducting planes. Although the complete formula, obtained by combining Eqs. 4 and 9, is
rather complicated, it gives an explicit analytic expression for the potential.

3 A finite wire grid between between two non-grounded

conducting planes

We now wish to extend our analysis to the case where 1) there is more than one wire between
the planes, and 2) the planes themselves are held at a potenetial difference. Suppose we have
an evenly spaced grid of finite wires, as shown in Fig. 2. The distance (pitch) between two
wires is a; they are a distance d above the bottom plate, and the total plate separation is b.
Let’s assume we have 2N + 1 wires, an odd number. Then we may place a wire at id, two
more at ±a + id, and so on, so that the last two wires are at ±aN + id. If the planes are
grounded, the potential of such a configuration is given by superposition of the potentials of
each individual wire:

Vg(z; N, a, b, d) = V (z; id) +
N∑

n=1

[V (z; an + id) + V (z;−an + id)]. (11)

Note that the dependence on b is implicitly contained in f , Eq. (4) (perhaps we should have
written f(z; b)).

We could of course also write down the potential of more than one grid between the two
planes:

VKg(z; N1, a1, b1, d1, . . . , NK , aK , bK , dK)

=
K∑

k=1

[
V (z; idk) +

Nk∑
n=1

[V (z; akn + idk) + V (z;−akn + idk)]

]
. (12)
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Figure 2: A wire grid between two conducting planes

Or, if we want an infinite grid(s), we may let N → ∞. Unfortunately, the resulting series
does not seem to be explicitly summable.

If the planes are not both grounded but held at a potential difference V we may simply
add a linear potential to Eq. (11) or Eq. (12). Setting (say) the bottom plane at V = 0 and
the top at V = V , we obtain (instead of Eq. (11)):

Vg(z; N, a, b, d,V) = V (z; id) +
N∑

n=1

[V (z; an + id) + V (z;−an + id)] + =(z)
V
b
. (13)

3.1 Rescaling

We might consider a certain simplification. We have been using three parameters to describe
our grid geometry (a, b, and d), when in fact we really need only two. If all our grids have
pitch a then we may rescale our strip via z 7→ z/a so that the pitch is always unity. In these
rescaled coordinates, our potential for one grid is then

Vg(z; N, b, d,V) = V (z; id) +
N∑

n=1

[V (z; n + id) + V (z;−n + id)] + =(z)
V
b
, (14)

noting of course that we have also taken b 7→ b/a and d 7→ d/a.

3.2 Explicit form

Before moving on, a few final calculation might prove useful (at least for computational
purposes). We begin by noting that if ζ = n + id then −n + id = −ζ. Moreover,

f(−ζ) =
e−

πζ
b − i

e−
πζ
b + i

=

(
e−

πζ
b + i

e−
πζ
b − i

)
=

(
e

πζ
b − i

−e
πζ
b − i

)
= −f(ζ). (15)

So we may rewrite Eq. (14) as

Vg(z; N, b, d,V) = Va(f(z); f(id)) +
N∑

n=1

[Va(f(z); f(n + id)) + Va(f(z);−f(n + id))] +=(z)
V
b
,

(16)
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Now, adding Va(z; ζ)+Va(z;−ζ) we are effectively multiplying the terms inside the logarithm.
From Eq. (9) with R = 1, we get

Va(z; ζ) + Va(z;−ζ) = −λ log

[(
z − ζ

zζ − 1

)(
z − ζ

zζ − 1

)(
z + ζ

zζ + 1

)(
z + ζ

zζ + 1

)]
, (17)

and the term inside the sum of Eq. (16) may be written this way, with z 7→ f(z), ζ 7→
f(n + id). Unfortunately, this expression does not seem to yield to farther simplification.

We may, however, put in the explicit values of f(z) and f(n + id). After some largely
uninteresting albegra we may find that

Va(f(z), f(id)) = λ log

[
(e

πz
b − e−

iπd
b )(e

πz
b − e

iπd
b )

(e
πz
b − e

iπd
b )(e

πz
b − e−

iπd
b )

]
(18)

and

Va(f(z); f(ζ)) + Va(f(z);−f(ζ)) = λ log

[
(e

πz
b − e

πζ
b )(e

πz
b − e−

πζ
b )(e

πz
b − e−

πζ
b )(e

πz
b − e

πζ
b )

(e
πz
b − e

πζ
b )(e

πz
b − e−

πζ
b )(e

πz
b − e−

πζ
b )(e

πz
b − e

πζ
b )

]
.

(19)
Then6

Vg(z; N, b, d,V , λ) = λ log

[
(e

πz
b − e−

iπd
b )(e

πz
b − e

iπd
b )

(e
πz
b − e

iπd
b )(e

πz
b − e−

iπd
b )

]

+λ
N∑

n=1

log

[
(e

πz
b − e

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e

π(n+id)
b )

(e
πz
b − e

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e

π(n−id)
b )

]

+=(z)
V
b

(20)

= λ log

[
(e

πz
b − e−

iπd
b )(e

πz
b − e

iπd
b )

(e
πz
b − e

iπd
b )(e

πz
b − e−

iπd
b )

×
N∏

n=1

(e
πz
b − e

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e

π(n+id)
b )

(e
πz
b − e

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e

π(n−id)
b )

]

+=(z)
V
b
. (21)

4 Infinite grids

We mentioned before that as N → ∞ the series (or product) describing the potential does
not seem to be explicitly summable. Suppose we wish to numerically find the potential of
an “infinite” wire grid, characterized by the property of translational invariance: each of its

6We explicitly include λ as a variable here, so that all parameters are accounted for.
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Figure 3: Contour plot of Vg(x + iy; N = 2, b = 1.5, d = 0.5,V = 0, λ = 1)

“cells” look identical. A reasonable procedure would be to pick some large N and look at
the Vg in the center cell,7−0.5 ≥ x ≥ 0.5. We know N is sufficiently large when

1. the further contribution from the terms with n > N is very small, or

2. the center cell is virtually identical to those surrounding it.

4.1 Condition 1

Let’s begin with the first condition. We wish to know the behavior of

T = λ log

[
(e

πz
b − e

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e

π(n+id)
b )

(e
πz
b − e

π(n+id)
b )(e

πz
b − e−

π(n−id)
b )(e

πz
b − e−

π(n+id)
b )(e

πz
b − e

π(n−id)
b )

]
(22)

for fixed x, y, b, d and large n (this is just series term in Eq. (20), with z = x + iy). Some
numerical tests suggest that T ∼ e−πn/b. To prove this claim, we look at

lim
n→∞

T

e−
πn
b

. (23)

In this limit, both the numerator and denominator go to 0, so we may use L’Hôpital’s rule
and differentiate both. This gets rid of the logarithm in T and makes the limit slightly more

7In this entire section we ignore the V term in Vg, i.e. we assume that both conducting planes are
grounded. We are investigating the errors of various approximations to the infinite sum, and we concern
ourselves only with the terms of this sum. The free V term does not affect these calculations at all.

7



manageable to evaluate. After some algebra (done with Mathematica8) we find that:

∂T

∂n
= λ

π

b

[
e

(−id+n)π
b (−1 + e

2idπ
b )(−1 + e

2nπ
b )(e

π(x−iy)
b − e

π(x+iy)
b )(−e

2nπ
b + e

2πx
b + e

4πx
b + 3e

2π(n+x)
b

+ e
4π(n+x)

b + e
2π(n−id+x)

b + e
2π(id+n+x)

b + e
2π(2n+x)

b + 3e
2π(n+2x)

b + e
2π(n−id+2x)

b + e
2π(n+id+2x)

b

− e
2π(n+3x)

b + e
2π(n+x−iy)

b + e
2π(n+2x−iy)

b − 2e
π(n−id+3x−iy)

b − 2e
π(n+id+3x−iy)

b − 2e
π(3n+id+3x−iy)

b

+ e
2π(n+x+iy)

b + e
2π(n+2x+iy)

b − 2e
π(n−id+3x+iy)

b − 2e
π(n+id+3x+iy)

b − 2e
π(3n−id+3x+iy)

b

− 2e
π(3n+id+3x+iy)

b − 2e−
iπ(d+3in+3ix+y)

b )
]

÷
[
(e

(n−id)π
b − e

π(x−iy)
b )(−e

(n+id)π
b + e

π(x−iy)
b )(−1 + e

π(n−id+x−iy)
b )(−1 + e

π(n+id+x−iy)
b )

× (e
(n−id)π

b − e
π(x+iy)

b )(e
(n+id)π

b − e
π(x+iy)

b )(−1 + e
π(n−id+x+iy)

b )(−1 + e
π(n+id+x+iy)

b )
]
. (24)

For large n, we keep only the largest exponent in each factor, and anything it is multiplied
by. The long sum in the denominator contains only two terms ∼ e

4πn
b (the fastest growing

ones); the rest of the terms are removed. In the end, this results in ∂T/∂n ∼ e−
πn
b , which is

cancelled by ∂/∂n(e−
πn
b ) from the denominator of Eq. (23). The terms that decrease more

slowly would have gone to zero in Eq. (23) for large n, so their removal is justified. We have:

∂T
∂n

∂
∂n

(e−
πn
b )

≈
λ(π

b )(e
(−id+n)π

b )(−1+e
2idπ

b )(e
2nπ

b )(e
π(x−iy)

b −e
π(x+iy)

b )(e
4π(n+x)

b +e
2π(2n+x)

b )

(e
(n−id)π

b )(−e
(n+id)π

b )(e
π(n−id+x−iy)

b )(e
π(n+id+x−iy)

b )(e
(n−id)π

b )(e
(n+id)π

b )(e
π(n−id+x+iy)

b )(e
π(n+id+x+iy)

b )(−π
b

)
e−

πn
b

=

−λ
e

7πn
b (e

π(−id+3x−iy)
b )(e

2πid
b − 1)(e

2πx
b + 1)(e

2πiy
b − 1)

e
8πn

b (e
4πx

b )

e−
πn
b

= −λe−
π(x+iy+id)

b (e
2πid

b − 1)(e
2πx

b + 1)(e
2πiy

b − 1)

= 8λ sin

(
πd

b

)
cosh

(πx

b

)
sin

(πy

b

)
. (25)

Therefore,

lim
n→∞

T

e−
πn
b

= 8λ sin

(
πd

b

)
cosh

(πx

b

)
sin

(πy

b

)
, (26)

and

T ≈ 8λ sin

(
πd

b

)
cosh

(πx

b

)
sin

(πy

b

)
e−

πn
b (27)

for large n.
Using this approximation, we can now explicitly sum the tail end of the series in Eq. (20):

λ

∞∑
n=N+1

log
[
. . .

] ≈ 8λ sin

(
πd

b

)
cosh

(πx

b

)
sin

(πy

b

) ∞∑
n=N+1

e−
πn
b

= 8λ sin

(
πd

b

)
cosh

(πx

b

)
sin

(πy

b

) e−
πN
b

e
π
b − 1

. (28)

8Not much effort was put into simplifying the appearance of this formula, since we remove most of the
terms in the next step.
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Call this “error term” E. This is a good approximation of the tail end so long as e−
πn
b

(
e

π
b − 1

)−1

is small (ensuring our N is sufficiently large). In the center cell, the region −1
2
≤ x ≤ 1

2
,

0 ≤ y ≤ b, we have

|E| ≤ 8|λ| e
−πN

b

e
π
b − 1

cosh
π

2b
. (29)

Suppose we would like |E| < e−C for some positive C, proportional to the digits of
precision in our numerical approximation to the infinite grid. Solving for N we find that we
need

e−
πN
b < 1

8|λ|e
−C e

π
b−1

cosh π
2b

⇒ N >
(C + log 8|λ|)b

π
− b

π
log(e

π
b − 1) +

b

π
log

(
cosh

π

2b

)
(30)

For b < 1 (b small), we see that − b
π

log(e
π
b − 1) ≈ − b

π
log(e

π
b) = −1. Also,

b

π
log

(
cosh

π

2b

)
=

b

π
log


e

π
2b + e−

π
2b

2


 ≈ b

π
log


e

π
2b

2


 =

1

2
− b

π
log 2, (31)

So we may write the condition on N as

N & (C + log 4|λ|)b
π

− 1

2
, b < 1. (32)

For the case b > 1, we first observe that

lim
b→∞

b2 log
(
cosh

π

2b

)
= lim

b→∞

d
db

log
(
cosh π

2b

)
d
db

b2

= lim
b→∞

π

4
b tanh

π

2b

= lim
b→∞

π

4
b

[
π

2b
+ O

(
1

b3

)]

=
π2

8
. (33)

So b
π

log
(
cosh π

2b

) ∼ π
8b

for large b. Indeed, the approximation is already good for b ≈ 1, and
we always have b

π
log

(
cosh π

2b

)
< π

8b
. We can also approximate

− b

π
log(e

π
b − 1) = − b

π
log

[
π

b
+ O

(
1

b2

)]

≈ b

π
log

(
b

π

)
, (34)
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and (with some algebra left out)

lim
b→∞

− b

π
log(e

π
b − 1)− b

π
log

(
b

π

)
= − lim

b→∞
b

π
log

[
b

π

(
e

π
b − 1

)]

= − lim
b→∞

d

db
log

[
b

π

(
e

π
b − 1

)]

d

db

π

b

= lim
b→∞

b(e
π
b − 1)− πe

π
b

π(e
π
b − 1)

= lim
b→∞

b
[

π
b

+ π2

2b
+ O

(
1
b3

)]− π
[
1 + π

b
+ O

(
1
b2

)]

π
[

π
b

+ O
(

1
b2

)]

= lim
b→∞

−π2

2
+ O

(
1
b

)

π2 + O
(

1
b

)

= −1

2
. (35)

Over the entire range b > 1,

− b

π
log(e

π
b − 1) ≈ b

π
log

(
b

π

)
− 1

2
(36)

is a very good approximation. Our condition for large N may be written as

N & (C + log 8|λ|)b
π

+
b

π
log

(
b

π

)
+

π

8b
− 1

2
, b > 1 (37)

(And of course, for very large b, we may drop the π
8b

term.)
Figure 4 shows the two approximations to Eq. (30), for parameters C = 3 and |λ| = 1.

4.2 Condition 2

We have not said much about the second condition for N to be sufficiently large, namely
that the center cell is virtually identical to those surrounding it. Such a test can easily be
done visually by looking at a contour plot of Vg. It is rather apparent when contours close
to the edge are not periodic in x.

Analytically, we would like Vg(x+iy) = Vg(x+1+iy)9 for x in the the center cell (note x±1
are equivalent, since Vg is symmetric). If we consider the difference Vg(x+iy)−Vg(x+1+iy),
and separate the potential contributions coming from symetrically opposed (±n) wires, we
see that most of the terms of Eq. (20) vanish. We are left with:

Vg(x + iy)− Vg(x + 1 + iy) = [potential from +N ]− [potential from −(N + 1)]. (38)

9The other parameters have been suppressed for simplicity.
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Figure 4: The “cutoff” for sufficiently large N . Approximation Eq. (32) is in dashed red,
and Eq. (37) in dot-dashed blue.

Requiring that this difference be small is much the same as requiring that the contributions
from large N terms be small, as we analyzed above for condition 1. Here, however, the
actual difference may be much smaller than the individual terms themselves, a situation we
will investigate.

From Eq. (27) we may infer that wires at positions ±n contribute a potential

V±n(x + iy) ≈ 4λ sin

(
πd

b

)(
e±

πx
b

)
sin

(πy

b

)
e−

πn
b

= 4λ sin

(
πd

b

)
sin

(πy

b

)
e−

π(n∓x)
b (39)

to the region near the center. We would like, then, that

VN(x + iy)− V−(N+1)(x + iy) ≈ 4λ sin

(
πd

b

)
sin

(πy

b

) [
e−

π(N−x)
b − e−

π((N+1)+x)
b

]
(40)

= 8λ sin

(
πd

b

)
sin

(πy

b

)
sinh

(
π(x + 1/2)

b

)
e−

π(N+1/2)
b

be small. In the center cell we have −1
2
≤ x ≤ 1

2
, so the sinh term is at most sinh

(
π
b

)
.

Calling the difference D, we obtain

|D| ≤ 8|λ| sinh
(π

b

)
e−

π(N+1/2)
b , (41)

and if we want this to be less than some parameter e−K (where K proportional to the digits
of correlation between two adjacent cells) we need:

N & (K + log 8|λ|)b
π

+
b

π
log

(
sinh

π

b

)
− 1

2
. (42)
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This time, having a large b seems to be in our favor! The function in Eq. (42) starts at +1/2
(for b = 0), increases to a maximum, and then decreases as b gets large. However, we find
numerically10 that the location of this maximum goes as πeK+log(8|λ|)−1 = 8π|λ|eK−1, and
that the height of the maximum goes as 8|λ|eK−1 − 1

2
. Thus, in general, it would take an

extremely large b to benefit from this effect – much too large for Eq. (37), and (intuitively)
too large for the physical situation.11

We may consider two approximations to Eq. (42). For small b we have sinh π
b
≈ 1

2
e

π
b , so

we obtain

N & (K + log 4|λ|)b
π

+
1

2
, (43)

which seems to be very good for b ≤ 1 and reasonably good up to b ≤ 2. For large b,
sinh π

b
≈ π

b
, so b

π
log

(
sinh π

b

) ≈ − b
π

log b
π
. Correcting this (somewhat arbitrarily12) by π

8b
we

arrive at

N & (K + log 8|λ|)b
π

− b

π
log

(
b

π

)
+

π

8b
− 1

2
. (44)

Figure 5 shows a graph of Eq. (42), with its two approximations, for K = 3 and |λ| = 1.

1 2 3 4 5
b

1

2

3

4

5

6

7

Nmin

Figure 5: “Cutoff” for sufficiently large N , using the second condition. Eq. (43) is in dashed
red, and Eq. (44) in dot-dashed blue.

4.3 Evaluation

In practice, it seems easy enough to just use Eq. (30) or Eq. (42) to determine a sufficiently
large value of N . The approximations, however, were done to elucidate the general depen-
dence of “large N” on the various parameters. Both Eq. (32) and Eq. (43) show a linear

10Or, for large b, we could also use b
π log

(
sinh π

b

) ≈ − b
π log

(
b
π

)
11See also the following section.
12In fact, limb→∞ b

(
b
π log

(
sinh π

b

)
+ b

π log b
π

)
= π

6 . But we are more concerned with behavior for
moderately-sized b, not the limit. So we use π

8b instead of π
6b because it fits this range better.
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dependence for small b. It is indeed comforting to see how nearly identical these equations
are for C = K, having the same multiplicative factor

C + log 8|λ|
π

(45)

and differing only by a constant 1. We can also see much similarity in Eq. (37) and Eq. (44);
they differ by a sign. For moderately sized b, K (or C), and |λ|, they are basically equivalent,
depending linearly on b with the same factor as Eq. (32) and Eq. (43).13

For much larger b, Eq. (44) (or Eq. (42)) seems somewhat unrealistic: N should always
increase with increasing b. Indeed, for very large b we are no longer dealing with a wire
between two plates. The plates are so far apart that we really only have an isolated grid.
And for such large b, with N . b as Eq. (42) would allow, the approximations that we made
to derive Eq. (27) should no longer hold! The most dependable condition on N for very large
b thus seems to be Eq. (37) with a positive b log b term.

We might also note that all equations show the same dependence on |λ|, which is hardly
surprising. It might however be slightly confusing that for sufficiently small |λ| the multi-
plicative coefficient Eq. (45) becomes negative. But one must remember that C and K are
absolute measures of precision (or error); indeed, the absolute error is comparable to e−C

(or e−K). We may rewrite Eq. (45) as

1

π
log

(
8|λ|
e−C

)
. (46)

For a smaller |λ| we want better precision. Putting the absolute error proportional to |λ|,
the argument of the logarithm becomes a constant, typically much greater than 1.

4.4 Remarks

Before moving on, it might be beneficial (or interesting) to say a few more things about
the formulas we have derived, in particular Eqs. 27 and 39. The latter implies that at large
distances the potential of a wire sandwiched between two grounded conducting planes is

Vw(ξ, y; b, d, λ) ≈ 4λ sin

(
πd

b

)
sin

(πy

b

)
e−

π|ξ|
b , (47)

where ξ is the horizontal distance from the wire. (The wire is at height d between two planes
a distance b apart, as usual.14) First, we notice that this potential is completely symmetric
about y = b/2. It is zero on the conducting planes and “bulges out” symetrically in the
space between them. This is what we might have expected at large distances.

But we also notice that the ξ dependence is exponentially decreasing – somewhat remark-
able in light of the fact that the potential of a wire in free space would grow logarithmically

13That’s the main point to get here, and it might be emphasized again: most of the time the dependence
on b is essentially linear, with multiplicative factor Eq. (45).

14We might have derived Eq. (47) directly from Eq. (18), and then used it to write Eq. (39) and to derive
Eq. (27). This would probably have been somewhat easier and more straightforward than the derivation in
Section 4.1.
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forever. This of course is entirely the effect of the grounded conducting planes: they force
the potential to 0, and evidently they do so exponentially. (Note the b dependence in the
exponential term.)

One other interesting result is that Eq. (18) essentially gives the potential of an infinite
(vertical!) grid of wires in free space with alternating charges. The image wire we used to
find the potential in the unit circle becomes an infinite grid of image wires in our regular
space. From Eq. (18), let

Vw(z; b, d, λ) = λ log

[
(e

πz
b − e−

iπd
b )(e

πz
b − e

iπd
b )

(e
πz
b − e

iπd
b )(e

πz
b − e−

iπd
b )

]
. (48)

If for some point z = x + iy we let y 7→ 2b− y we effectively get z 7→ z; the numerator and
denominator in Eq. (48) are switched, giving the logarithm and the overall potential a minus
sign. If instead we let y 7→ y + 2b, we effectively get z 7→ z; the potential doesn’t change.

Putting d = b/2 we obtain an infinite vertical grid with alternating charges and all wires
the same distance (b) apart. (Otherwise, our “images” also alternate in their placement, as
shown by the transformations above.) Figure 6 shows a contour plot of Vw(x + iy; b, d, λ) =
Vg(x, y; N = 0, b, d,V = 0, λ), extended along the y direction so we may see the “image”
grid.
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Figure 6: The vertical image grid; here, λ = 1, b = 2, and d = 0.7.
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5 Multiple realistic grids and boundary conditions: an

attempt at modelling

For practical modelling applications15, we are often interested in several wire grids placed
between “infinite” conducting plates. Equation (12) gives a general expression for this (once
we add in a potential V

b
=(z)); but we want to satisfy some specific boundary conditions,

effectively to determine the correct combination of coefficients λk. We shall assume here
that all grids involved in our problem have the same pitch, thereby allowing us to use the
rescaled potentials Vg shown in Eq. (21) and Eq. (20).16

In a real application we may want to specify either the potential of a wire grid or the
electric field at points on the wires – wires of finite radius. How do we accomodate this? Our
wires are infinitesimally small, and we specify the charge λ on them. But in a very small
neighborhood of a wire, the equipotentials are almost perfect circles, as can be seen in Figs. 3
and 6. Thus we might approximate real wires of very small radius r with infinitesimal wires
carrying an appropriate charge. (We evaluate the accuracy of this approximation further
below.)

Then another concern arises: if we approximate a small-N finite grid of real wires with
a grid of infinitesimally small wires, the “circular” equipotentials at a small distance r from
our infinitesimal wires won’t all have the same value! The wires at the ends of the grid will
probably have a smaller potential than the wires in the middle. We could adjust Eq. (20)
so that each term in the sum carried a different coefficient λ, as appropriate to keep the
r-potentials constant. This may indeed be the necessary path to take in some situations!
However, in many real cases N is very large, and, more importantly, N/b might be large. We
can approximate the real grids by infinite grids, and in turn approximate the infinite “real”
grids by our modelled finite grids with large N . For an infinite grid, the r-potentials will of
course be constant. We therefore take N sufficiently large, as called for by the analysis of
Section 4, and only consider the central cell of our grids.17

Now suppose we would like:

1. K grids18 placed at vertical positions d1, . . . , dK between two plates of separation b,

2. wire radii rk on the kth grid,

3. a potential difference V between the top and bottom plates, and either

4a. a potential vk on each wire of the kth grid, or

4b. an electric field Ek at (say) the bottommost part of each wire of the kth grid.

15Eg. particle detectors
16In some problems, this is not the case; the argument given here may be adjusted accordingly.
17We are making many approximations. Perhaps better approximations exist, but in this way are getting

a relatively simple, somewhat accurate model and some decent estimates. As noted further below, actual
experiment will show whether or not we have done right.

18We are assuming here that the pitch of each grid is 1; otherwise the entire set specifications may be
scaled appropriately.
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We are assuming here that the pitch of each grid is 1; otherwise the entire set specifications
may be scaled appropriately. Also we assume for the remainder of the section that Vg[z; n, b, d]
implicitly means Vg[z; n, b, d,V = 0, λ = 1], as given by Eq. (20). We shall put in V and
constants λ explicitly.

Specifying the electric field at the bottommost point of a wire requires that we know
something of the “vertical” derivative of Vg. This calculation is carried out at the end of this
section. For now, we simply refer to

DyVg(z; n, b, d) :=
∂

∂y
Vg(x + iy; n, b, d). (49)

We fix some N , presumably satisfying

N & (C + log 4λ)b

π
(50)

(or the appropriate large b equation) for some moderatly sized C. We will not actually
specify N here, and its actual value may be adjusted at the end.

5.1 K = 1, one grid

Suppose we only have one grid between the plates (so we may drop subscripts from the
parameters). The general form of our potential is

V (x, y) = λVg(x + iy; N, b, d) + V y

b
, (51)

with λ a parameter to be determined. If the grid is at potential v, we would like

V (±r, d) = λVg(±r + id; N, b, d) + V d

b
= v. (52)

In other words, we are requiring that the potential at the (supposedly small) wire radius r
be v. Since the potential may actually vary a little bit as we go around the wire, we just
(somewhat arbitrarily) use the positions to the sides of the central wire as our boundary
condition points. (It doesn’t matter whether we use +r or −r; recall that the potential is
symmetric in x.) This determines

λ(v) =
v − Vd/b

Vg(±r + id; N, b, d)
. (53)

If instead of condition 4a we use 4b, specifying the field at (again somewhat arbitrarily)
the bottommost point of the central wire, we must have

−DyV (0, d− r) = −λDyVg(i(d− r); N, b, d)− V
b

= E, (54)

which fixes λ as

λ(E) = − E + V/b

DyVg(i(d− r); N, b, d)
. (55)
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5.2 K > 1, multiple grids

With multiple grids the general expression of the potential takes the form

V (x, y) =
K∑

k=1

λkVg(x + iy; N, b, dk) + V y

b
, (56)

and when imposing the potential or field conditions at the wires we obtain a system of K
equations which look either like

V (±rj, dj) =
K∑

k=1

λkVg(±rj + idj; N, b, dk) + V dj

b
= vj (57)

(for potentials vj on the jth grids) or

−DyV (0, dj − rj) =
K∑

k=1

λk[−DyVg(i(dj − rj); N, b, dk)]− V
d

= Ej (58)

(for fields Ej on the jth grids), with j = 1, . . . , K.
This system of equations is linear, and may be recast as

Mλ = F (59)

or
∑

k Mjkλk = Fj, (60)

where

λ = (λ1, λ2, . . . , λK)t, (61)

Fj =





vj − V dj

b
if potential condition on jth grid

Ej +
V
b

if field condition on jth grid,

(62)

Mjk =

{
Vg(±rj + idj; N, b, dk) if potential condition on jth grid

−DyVg(i(dj − rj); N, b, dk) if field condition on jth grid.
(63)

The coefficients λk may then be solved for by the usual method of determinants. This, then,
is a complete solution to the problem we posed.

5.3 An example

In a certain particle detector we have the following configuration:

• A fine mesh (approximated by a plane) at position 0 mm and (negative) potential V ,

• A grid (1), pitch 2 mm, radius 0.0100 mm, at position 9.80 mm and potential V1,

• A grid (2), pitch 2 mm, radius 0.0625 mm, at position 12.62 mm and potential 0,
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• A fine mesh (approximated by a plane) at position 19.48 mm and potential 0.19

To fit the analysis we have been performing, we may add a potential −V to everything and
divide all quantities by 2 so that the pitch is 1 mm. This results in:

• A fine mesh (approximated by a plane) at position 0 mm and potential 0,

• A grid (1), pitch 1 mm, radius 0.0050 mm, at position 4.90 mm and potential v1,

• A grid (2), pitch 1 mm, radius 0.0312 mm, at position 6.31 mm and potential v2,

• A fine mesh (approximated by a plane) at position 9.74 mm and potential v2,

with v1 = (V1 − V)/2 and v2 = −V/2.
Our problem is one of transparency. While keeping V (v2) fixed, we wish to vary the

value of V1 (v1) so that the detector is either fully transparent to drifting electrons or fully
intercepting of them at grid 1. We assume the detector is fully transparent when E1 = 0,
i.e. the field at the bottommost pointof grid 1 is 0. And the detector is fully intercepting
when v1 = v2.

20

We may begin with full transparency. In this case we have

M =

(
−DyVg((4.9− 0.005)i; N, 9.74, 4.9) −DyVg((4.9− 0.005)i; N, 9.74, 6.31)

Vg(±0.0312 + 6.31 i; N, 9.74, 4.9) Vg(±0.0312 + 6.31 i; N, 9.74, 6.31)

)
, (64)

F =

(
v2/9.74

v2(1− 6.31/9.74)

)
, (65)

and

λ1 =

det

(
v2/9.74 −DyVg((4.9− 0.005)i; N, 9.74, 6.31)

v2(1− 6.31/9.74) Vg(±0.0312 + 6.31 i; N, 9.74, 6.31)

)

det(M)
,

λ2 =

det

(
−DyVg((4.9− 0.005)i; N, 9.74, 4.9) v2/9.74

Vg(±0.0312 + 6.31 i; N, 9.74, 4.9) v2(1− 6.31/9.74)

)

det(M)
. (66)

If we would like a precision in our infinite grid estimate proportional to (say) ∼ 4 digits
when max(λ1, λ2) = 1, we should take

N &
(

log
8

e−4

)
9.74

π
= 18.85 (67)

19The idea here is that most drifting electrons will be collected on grid 2, but any that get through will
be collected on the 0V mesh.

20These conditions, in a sense, give estimates of the minimum voltages we will have to apply to grid 1 to
result in either transparency or interception.
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Putting N = 20, then, we obtain

λ1 = −3.847× 10−4 v2, λ2 = 1.157× 10−2 v2. (68)

Therefore our potential is

V (x, y) = −3.847× 10−4 v2Vg(x + iy; 20, 9.74, 4.9)

+1.157× 10−2 v2Vg(x + iy; 20, 9.74, 6.31) + (v2/9.74)y. (69)

Figure 7 shows a plot of V (0, y), the profile of the potential going through the central
wire. One may imagine electrons climbing up the potential slope, which is essentially linear
up to the second grid. The first grid is invisible on a large scale (as we might indeed want),
and so is shown close up in the left plot. Note how the potential is flat at y = 8.895, as
required. Figures 10-12 of the Appendix show contour plots of various sections of the grid.
It was necessary to zoom in on the different sections in order to see the detail.
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Figure 7: V (0, y) transparent, with v2 = 10

Letting x + iy = 4.9± 0.005i (the outside of the central wire of grid 1), we get

v1 = V (4.9, 0.005) ≈ 0.739 v2. (70)

Using our original notation, we see that

V1 = 2(v1 − v2)

V = −2v2, (71)

and so

V1 =

(
1− v1

v2

)
V (72)

≈ 0.261V (73)

in our case, for full transparency.
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We would also like to find the potentials for the case of full interception (or full collection
on grid 1). In this case, we require v1 = v2, or V1 = 0. We have:

M =

(
Vg(±0.005 + 4.9 i; N, 9.74, 4.9) Vg(±0.005 + 4.9 i; N, 9.74, 6.31)

Vg(±0.0312 + 6.31 i; N, 9.74, 4.9) Vg(±0.0312 + 6.31 i; N, 9.74, 6.31)

)
, (74)

F =

(
v2(1− 4.9/9.74)

v2(1− 6.31/9.74)

)
. (75)

Choosing N = 20 as above, these give (evaluating the determinants):

λ1 = 0.01124

λ2 = 0.00349. (76)

Therefore, for full interception at grid 1, we have

V (x, y) = 0.01124 v2Vg(x + iy; 20, 9.74, 4.9)

+0.00349 v2Vg(x + iy; 20, 9.74, 6.31) + (v2/9.74)y. (77)

A plot of V (0, y) is shown in Fig. 8, and a contour plot in Fig. 13. There is no need here
to zoom in on details, since all the charges are moderately strong.

2 4 6 8
x

2

4

6

8

10

y

Figure 8: V (0, y) intercepting, with v2 = 10

5.4 Some brief comments on error

As discussed at the beginning of this section, the approximations we have made in our
model carry with them two major sources of error. The first comes from our infinite grid
approximation. By choosing N = 20 we assured ourselves that, were we to have only one
grid by itself, the potential of the center cell would be ‘correct’ to a few decimal places better
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than λ of that grid. With two grids (or K grids), this error bound remains true for each
grid individually. When they are superimposed we only know that the complete potential is
accurate to a few decimal places less than the largest λk.

21 In our two cases above, though,
the values we obtained for λ1 and λ2 were roughly comparable (differing only by two or so
orders of magnitude), and N = 20 gives an approximation to an infinite grid that is not bad
at all. Figure 9 estimates the absolute error along the line x = 0 by comparing our potentials
to those with N = 50.22
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Figure 9: Estimate of absolute error in V (0, y) (with v2 = 10) vs. an infinite grid

Unfortunately, there is a quite unknown error in our approximation of the real particle
detector as a a set of infinite grids (which we then approximated with our model). There is
also error coming from the fact that we assumed our wire radii were small enough that we
could approximate the wires by infinitesimally small ones. This is valid as long as computed
equipotentials at the real wire radii are circular. In the case of an intrecepting grid 1, this
does seem to be the case, as one may see from Figure 13. But in the case of transparency,
this is not valid at grid 1, as can be seen in Figs. 7 and 11. In this case, the linear potential
difference between the plates and the contribution from grid 2 effectively set up a (strong)
linear potential (uniform field) at grid 1. When we add in the potential of grid 1, with very
small λ1, this linear potential overpowers the tendency of equipotentials to be circular. The
value of v1 given in Eq. (70) is essentially just the value of the linear potential. To achieve
full transparency in our real drift chamber, we will probably need a lower v1 (or V1) than
that calculated.

Some of the errors discussed here are small, while others may be quite significant. The
model we have used might be adjusted slightly in different ways to try to improve its accuracy.
But in the end it will still only give a suggestion of what certain parameters need to be, as it

21It occurs to the author that fractional error may have been a good concept to explore. Perhaps another
day.

22The potentials for N = 50 use slightly corrected values of λ1 and λ2, calcualted with Vg and DyVg with
N = 50. It turns out that our N = 20 values were good to three significant digits, and ±1 for the fourth
significant digit. This slight alteration is what causes the sharp (infinite) peaks in the error graphs at the
grids. We have been slightly naive, ignoring this correction, and predicting an absolute bound on error. But
the sharp peaks only manifest themselves near the infinitesimally small wires, well away from the finite wire
bounds we are trying to model. . . .
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does now. Its ultimate validity must be tested experimentally. One must try the suggested
value of V1 for transparency and see if transparency is indeed achieved! As mentioned, a
lower value might be needed. (We may also need to use a higher value of V1 than 0, as called
for by our heuristic, to achieve full interception.)23

Hopefully our model will provide some helpful suggestions, both through its predictions of
parameters and its ability to provide visualizations. However, whether or not this happens,
we may content ourselves with the fact that it has provided an excellent exercise.

5.5 The y-derivative

For closure before we finish, we will explicitly compute ∂
∂y

Vg(x + iy; n, b, d). From Eq. (20)
we have:

Vg(x + iy; N, b, d) = log

[
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But letting

Vw(x + iy; N, b, d) = log

[
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(c.f., Eq. (78)), we see from Eq. (14) (and common sense applied to our inital derivation)
that we may write Eq. (78) as

Vg(x + iy; N, b, d) = Vw(x + iy; N, b, d) +
N∑

n=1

[potential from wires displaced ±n units]

= Vw(x + iy; N, b, d)

+
N∑

n=1

[Vw((x + n) + iy; N, b, d) + Vw((x− n) + iy; N, b, d)] . (80)

Then our derivative is

∂

∂y
Vg(x + iy; N, b, d) =

∂

∂y
Vw(x + iy; N, b, d)

+
N∑

n=1

[
∂

∂y
Vw((x + n) + iy; N, b, d) +

∂

∂y
Vw((x− n) + iy; N, b, d)

]
, (81)

and we see that the only function we really have to differentiate is Vw. After finding this
derivative, we have simply to substitute x → x ± n to obtain the terms in the sum. Using
Mathematica and some further rearranging, we find

23Using contour plots such as Fig. 13, and creating plots of field lines, the model may in fact help us study
the validity of the heuristic. . .
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Though it is not done here, we note that we can also use this technique to find an
expression for the x-derivative (and thus the electric field).

¤

A Extra contour plots
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Figure 10: Contour plot of V (x, y) transparent, near grid 2
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Figure 11: Contour plot of V (x, y) transparent, close-up on grid 1
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Figure 12: Contour plot of V (x, y) transparent, near grid 1
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Figure 13: Contour plot of V (x, y) intercepting, near grids 1 and 2
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