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Einstein was the first to note that the sky would not be
blue without fluctuations in the distribution of the molecules
that scatter sunlight. It follows that the intensity of the scat-
tered light fluctuates. These fluctuations are practically unde-
tectable for a large scattering volume such as the atmosphere.
However, for a localized source, there result dramatic fluctu-
ations in intensity with a correlation length in frequency that
varies inversely with the source size. Measurement of the
correlation in intensity fluctuations permits a determination
of the pulsewidth in, for example, the synchrotron radiation
emitted by a pulse of electrons passing through a magnetic
field

I. INTRODUCTION

We conisder a novel method to measure the width,
∆t, of a pulse of relativistic electrons (a beam pulse), via
the correlations in the intensity fluctuations of radiation
emitted when the pulse passes through a magnetic field.
Since intensity fluctuations appear to be a kind of noise,
this technique is somewhat counterinituitive.

The measurement is based on synchrotron radiation,
whose spectrum extends up to a maximum angular fre-
quency ωmax À 1/∆t. This behavior indicates that the
radiation is not (first-order) coherent. Then, we can
examine the frequency spectrum around a central fre-
quency, ω0 À 1/∆t. At this high frequency, we must
take into account the phase difference between light emit-
ted by different electrons in the beam pulse. Indeed, if
the electrons were arranged on a lattice, the phase dif-
ferences would result in essentially complete destructive
interference, and there would be no signal.

But because of fluctuations in the positions of the elec-
trons, a useful signal results. For n electrons, the average
intensity at frequency ω0 À 1/∆t is n times that from a
single electron; the rms amplitude is

√
n times that for a

single electron. The radiation at such frequencies is in-
coherent, in contrast to coherent radiation for which the
intensity is n2 times that for a single electron.

The amplitude of the radiation at a particular fre-
quency could, of course, be positive, or negative, or very
close to zero. Thus, if we examine the radiation spectrum
over a range of frequencies near ω0, the amplitudes will
vary over the range ±√n; the intensity will vary between
0 and n (times that due to a single electron). There are

100% fluctuations in the intensity as a function of fre-
quency, and the itensity spectrum appears noisy.

In optics, a source whose intensity is n times that of
a unit source, and whose intensity fluctuations have rms
magnitude n, is called a “thermal” or “chaotic” source,
as first described by Rayleigh [1]. In case of a signal
based on n independent samples, one class of fluctuations
will have size

√
n. The 100% intensity fluctuations that

arise here should perhaps be called fluctuations of the
fluctuations, as discussed in greater detail in sec. VI.

The light from a thermal source, although described
as incoherent, still manifests intensity correlations that
contain information as to the temporal pulsewidth of the
source, which can be extracted with a suitable detector.
For a frequency extremely close to ω0, the phases of the
amplitudes from the various electrons of a given pulse are
still extremely close to those for radiation at ω0, and the
total amplitude and intensity are still very close to those
at ω0. That is, although the frequency spectrum is sub-
ject to 100% fluctuations, there is a correlation length,
Γω, in frequency.

The size of is the correlation length Γω can be esti-
mated by noting that in going from frequency ω to ω+Γω,
the phase difference of radiation from electrons that are
the pulsewidth ∆t apart changes by about 180◦, so that
the amplitude for radiation at ω + Γω is no longer well
correlated to that at frequency ω. At once, we expect
that

Γω ≈ 1
∆t

. (1)

The correlation length varies inversely with the
pulsewidth. This permits a measurement of the
pulsewidth by a measurement of the frequency correla-
tion length. Furthermore, the accuracy of the measure-
ment will be greater for a short pulse than for a long
one.

This scheme was proposed by one of us [2,3], and re-
cently has been confirmed in the laboratory [4]. It has
also been considered in [5].

Section II discusses aspects of the measurement by this
technique. Sections III-VII present more detailed deriva-
tions of the concept, but without adding anything fun-
damentally new to the short description given above.
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II. DISCUSSION

The pulsewidth measurement was demonstrated with
the apparatus shown in Fig. 1 [4], which collected spectra
such as those shown in Fig. 2.
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FIG. 1. The apparatus used in [4] to measure the
pulsewidth of an electron bunch via frequency correlations.
The beam energy was 44 MeV, and each pulse contained
about 109 electrons. Synchrotron radiation was generated in
a 50-cm-long wiggler with 0.9-cm period and peak magnetic
field of 0.4 T. Visible radiation centered about 620 nm was
analyzed in a spectrometer with 0.6-nm resolution.

FIG. 2. Single-shot spectra of a portion of the synchrotron
radiation from electron pulses measured by another technique
to have pulsewidths of 1.5 ps (top) and 4.5 ps (bottom) [4].

The intensity spectrum looks something like a random
‘comb’, with ‘teeth’ whose average height is n times that
due to a single electron, and whose width in frequency is
Γω = 1/∆t. As seen in Fig. 2, the teeth are indeed wider
for the shorter electron beam pulse.

If one could not resolve the teeth, the spectrum would,
of course, appear to be smooth. This is what happens
when we look at the sky. The strength of the scattered
light depends on the density of the molecules (and not on
the square of the density). But, because the atmosphere
is thick, the frequency correlation length is extremely
short – much less than the spectral resolution of our eyes.
Hence, we have no everyday experience of the ‘frequency
comb’.

Some remarks about measurements:

c∆t ≈ c

Γω
=

c

ω0

ω0

Γω
≈ λ0

ω0

Γω
. (2)

The shortest pulse that could be measured this way cor-
responds to Γω ≈ ω0, i.e., c∆t ≈ λ0 [≈ 1 µm ≈ 3 fs for
an optical detector].

III. NONRELATIVISTIC DC CURRENT

The electromagnetic fields of a closed loop of a con-
tinuous charge distribution in steady motion with any
velocity have no time dependence, and hence, no radia-
tion. However, individual charges moving with velocity v
in, for example, a ring of radius r are subject to accelera-
tions v2/r (with v ≈ 1 m/s for a copper wire), and would
radiate if they were in isolation. How does the radiation
come to be suppressed as the charge distribution changes
from a discrete collection of n charges to an effectively
continuous distribution of a large number of charges?

Following J.J. Thomson [6], we note that for a ring of
charge, radiation is expected only at harmonics of the
fundamental angular frequency ω = v/r. Indeed, the
field component at the mth harmonic depends on the
strength of the mth multipole of the charge distribution,
which depends on the mth power of the positions of the
charges. For example, if θ is the azimuthal angle of some
electron to the z axis, which is both a diameter of the
ring and the line of sight to the observer, then the mth
multipole moment depends on cosm θ, which has a lead-
ing term of cos mθ = Re(eimθ). For n particles regularly
spaced around a ring that rotates with angular frequency
ω, the jth particle has azimuth θj = ωt + 2πj/n, and so
the total contribution to the mth moment is proportional
to

∑

j

eim(ωt+2πj/n) = eimωt
∑

j

e2imπj/n. (3)

For large n, this sum is negligible unless the harmonic
number m is a multiple of n, in which case the sum is n.
That is, for n charges, the lowest contributing multipole
moment is of order n. But the radiated power at the nth
multipole varies as (v/c)2n, so for nonrelativistic veloci-
ties, as in a wire, the radiation is heavily suppressed.

A more detailed treatment [6] shows that the ra-
diated power at the nth harmonic is proportional to
(nv/c)2n/(n!)2, which reduces to (v/c)2n with the aid
of Stirling’s approximation.

Recall that the use of a multipole expansion is a
systematic way of treating interference effects between
charges at different places within a localized source.

See also problems 14.23 and 14.24 of [7], or problem
12.53 of [9].

IV. RELATIVISTIC DC CURRENT AND LONG
PULSES

Instead of nonrelativistic currents in wires, consider
relativistic electron beams moving in a magnetic field.
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There is no kinematic suppression of high multipole ra-
diation here – synchrotron radiation peaks at the γ3 har-
monic [7,8], where γ = 1/

√
1− (v/c)2. Hence the non-

relativistic argument of sec. III does not suffice here.
Rather, we note that in the relativistic case, the fun-

damental frequency has wavelength of order of the ring
circumference, and higher harmonics have wavelengths
shorter than this. Over a distance of one wavelength at a
high harmonic, the arc of the ring is essentially a straight
line. The interference that suppress the radiation in the
relativistic case must apply to sources that are effectively
straight lines. Since the effect of a line source is easy to
calculate, and corresponds to a short bunch of electrons
in the laboratory, we only treat line sources from now on.

In the remainder of this section, we demonstrate the
expected result that a smooth distribution of charge mov-
ing along a line does not radiate at wavelengths small
compared to the characteristic length (bunch length) of
the distribution. At wavelengths larger than the bunch
length, coherent radiation is observed from n charges
with intensity n2 times that from a single charge.

Consider a charged particle moving with v ≈ c primar-
ily along the z axis. The particle emits radiation that is
detected, for simplicity, in the forward direction. The
observer is at z = r. The amplitude of the detected radi-
ation from the single charge (emitted when it was at z)
is written as

A =
∫

dωa(ω, z)ei[k(r−z)−ωt], (4)

where a(ω, z) describes the frequency spectrum of the
radiation.

The dependence of a on z reflects the details of the
radiation process. We do not wish to emphasize those
details here, and will ignore the dependence of a on z.
This is justified, for example, by supposing that the beam
passes through a short region of nearly uniform trans-
verse magnetic field, resulting in a pulse of synchrotron
radiation.

We next consider a bunch of n charges, which are at
positions zj , j = 1, ..., n, at the relevant time of emis-
sion. Then

A =
n∑

j=1

∫
dωa(ω)ei[k(r−zj)−ωt]. (5)

The instantaneous power of the radiation at the ob-
server is proportional to |A|2. A radiation detector typ-
ically integrates the intensity over time to observe the
total pulse energy U . The detector may contain a spec-
trometer that analyzes the pulse energy according to

U =
∫

U(ω)dω, (6)

where

U(ω) ∝ |A(ω)|2, (7)

and

A =
∫

A(ω)e−iωt. (8)

A. Continuum Approximation

We replace the sum over j by an integral over z, with
ρ(z) describing the effective density of the charges. That
is,

A ≈
∫

dzρ(z)
∫

dωa(ω)ei[k(r−z)−ωt]

=
∫

dωa(ω)ei[kr−ωt]

∫
dzρ(z)e−ikz (9)

=
∫

dωa(ω)ρ(ω)ei[kr−ωt],

where ρ(ω = kc) is the Fourier transform of the charge
distribution.

In the following, we will generally normalize the radi-
ation to that of a single electron. Then it suffices to note
that the Fourier components of the field amplitude and of
the pulse energy obey A(ω) ∝ ρ(ω) and U(ω) ∝ |ρ(ω)|2,
respectively.

B. Uniform Bunch

For example, consider a uniform charge distribution
extending from z = 0 to l. Then ρ(z) = n/l on this
interval, and

ρ(ω) =
∫ l

0

dz
n

l
e−ikz = ne−ikl/2 sin kl/2

kl/2
. (10)

This is big only for kl < 1, in which case ρ(ω) ≈ n, and
the observer detects coherent radiation from an effective
charge of size n. But for wavelengths shorter than the
bunch length, the radiation is heavily suppressed (by de-
structive interference).

We learn more by considering the pulse energy, which
in a narrow frequency interval will be proportional to
|ρ(ω)|2. Namely,

|ρ(ω)|2 ≈
(

2n

kl

)2

sin2 kl/2. (11)

The sine varies rapidly between 0 and 1 for small changes
in frequency, so we replace it by its average, 1/2. (This
corresponds to averaging over uniform charge distribu-
tions of lengths near l, but which vary in length by more
than a wavelength.) Then,

〈|ρ(ω)|2〉 ≈ 2
( n

kl

)2

. (12)

At high frequencies the radiation falls of as 1/ω2, i.e.,
rather slowly. This is a result of the assumption of a sharp
edge to the charge density distribution, which enhances
the high-frequency end of the spectrum.
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C. Gaussian Bunch

We also consider a Gaussian distribution of n charges,
with rms length σ:

ρ(z) =
n√
2πσ

e−z2/2σ2
. (13)

Then,

ρ(ω) =
∫

dz
n√
2πσ

e−z2/2σ2
e−ikz = ne−(kσ)2/2. (14)

This is exponentially suppressed once kσ > 1, showing
that a smoothly varying charge distribution results in
extremely small radiation as frequencies large compared
to the reciprocal of the pulsewidth.

V. FLUCTUATIONS

We now consider the effect of fluctuations in the dis-
tribution of the electrons within the beam pulse.

The following argument derives from the famous ex-
tensions of Smoluchowski [10] and Einstein [11] of of
Rayleigh’s treatment of the blue sky [13]. Smoluchowski
noted that density fluctuations in the atmosphere lead to
a scattered intensity proportional to the number of mole-
cules. Apparently, he initially thought this was an addi-
tional contribution to Rayleigh scattering, but Einstein
pointed out that interference effects would suppress the
scattering in the absence of fluctuations [12]; all Rayleigh
scattering is due to density fluctuations. Both Smolu-
chowski and Einstein noted that density fluctuations play
a key role whatever their origin, but their detailed dis-
cussion emphasized thermal fluctuations; indeed, in 1910
it was still preferred to use general principles of thermo-
dynamics over models based on molecules. An argument
such as that given below, in which temperature is not
mentioned, was perhaps first given by Lorentz [14].

The n particles of the bunch are distributed along the
z axis. We partition this distribution into intervals, la-
belled by index j, of length small compared to the wave-
length of interest of the radiation, but large enough that
the population nj is large compared to one for intervals
near the center of the bunch.

We label the number of electrons in interval j in the
absence of density fluctuations as Nj , and we write the
fluctuations about this value as δnj . That is,

nj = Nj + δnj , (15)

where,
∑

j

Nj = n, 〈δnj〉 = 0,
〈
(δnj)2

〉
= Nj . (16)

Then, the Fourier transform of the density distribution
is

ρ(ω) =
∑

j

nje
−ikzj =

∑

j

(Nj + δnj)e−ikzj . (17)

The average of the second term is zero, by definition.
According to the argument of sec. IV above, the aver-
age value of the first term is effectively zero for frequen-
cies large compared to 1/∆t, where ∆t is the electron
pulsewidth. That is, the average value is zero for the
amplitude Aei(kr−ωt) for the component at frequency ω
of a pulse of radiation from n charges. The average is
taken over many such pulses.

To calculate the rms (root-mean square) value of the
amplitude, we consider

〈|ρ(ω)|2〉 =

〈∣∣∣∣∣∣
∑

j

Nje
−ikzj

∣∣∣∣∣∣

2〉

+2Re

〈
∑

j

Nje
−ikzj

∑

l

δnle
ikzl




〉
(18)

+

〈∣∣∣∣∣∣
∑

j

δnje
−ikzj

∣∣∣∣∣∣

2〉
≡ 〈A〉+ 〈B〉+ 〈C〉.

The term 〈A〉, which is due to the average charge distri-
bution, is effectively zero for frequencies large compared
to 1/∆t. Since the fluctuations, δnj , average to zero, the
term 〈B〉 is also negligible. All that remains is 〈C〉:

〈C〉 =

〈∣∣∣∣∣∣
∑

j

δnje
−ikzj

∣∣∣∣∣∣

2〉

=
∑

j

(δnj)2 +
∑

j 6=l

δnjδnle
−ik(zj−zl). (19)

The second term of this is zero on average, while〈
(δnj)2

〉
= Nj , so

〈|ρ(ω)|2〉 = 〈C〉 =
∑

j

Nj = n, (20)

for ω À 1/∆t.
This is the famous result that the combined intensity

of n sources (scattering centers in the blue sky example)
is, on average, only n times that of a single source if the
sources have a random distribution, and the wavelength
is small compared to the source size. This behavior is
labelled “thermal”, although no temperature need be in-
voked to describe it. Therefore, the label “chaotic” is
also used sometimes.

Of course, the result that
〈|ρ(ω)|2〉 = n is only true

on average, and we should also consider the fluctuations
about the mean.

VI. FLUCTUATIONS OF THE FLUCTUATIONS

It was noted by Ornstein and Zernike [15] that the
arguments of Smoluchowski and Einstein are not suffi-
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cient in the case where the fluctuations are large, such as
near a critical point. That is, Smoluchowski and Einstein
did not really explain critical opalescence, but rather the
more ordinary case of Rayleigh scattering away from a
critical point. When what we call the fluctuations of
the fluctuations are important, further analysis is needed
based on the concept of correlation functions, first intro-
duced by Ornstein and Zernike. For a general discussion,
see [16].

In the example of a narrow pulse of electrons, a phase
transition is not possible. However, the concept of a cor-
relation length is highly relevant. This section discusses
the variations in the intensity of the radiation at a par-
ticular frequency, and the following section takes up the
issue of intensity correlations.

The intensity is the square of the amplitude, so if the
average intensity is n times that of a single source, the
average amplitude (electric field) must be

√
n times that

of a single source. The random phases of the fields from
the n sources lead to vector sum of the amplitudes that
is a kind of random walk (in amplitude space at a given
time) in which the total field has a random phase, and
rms magnitude

√
n times that of a single source.

We note that the average amplitude in this case is zero,
and so the intensity has a statistical distribution with
zero as the most probable value, and mean n times that
due to a single electron. The intensity probability distri-
bution has the exponential form

P (|ρ(ω)|2) ∝ e−|ρ(ω)|2/n, (21)

whose first and second moments are n and 2n2, respec-
tively, and therefore whose rms spread is n. That is, the
intensity fluctuations have the same magnitude as the
average intensity; we observe 100% fluctuations at any
particular frequency.

As an aside, we note that such 100% fluctuations would
not occur if the radiation from the individual electrons
had amplitudes all of one sign, i.e., if the radiation were
unipolar. However, a bounded source cannot emit unipo-
lar electromagnetic radiation [17]. Any real source of
electromagnetic radiation produces waves with both pos-
itive and negative amplitudes.

The existence of 100% intensity fluctuation is possi-
bly counterintuitive in terms of the common argument
that a statistical quantity based on n samples will have
fluctuations of order

√
n. Indeed, the starting point of

the discussion in sec. V was that the fluctuations δnj

about the mean number Nj of electrons in cell j have rms
size

√
Nj . Yet, the consequent intensity fluctuations are

100%. It may be helpful to supplement the picture of the
random walk of amplitudes with a detailed evaluation of
the fluctuations in |ρ(ω)|2 about its average value of n
using the notation of sec. V. This approach is useful also
in calculating the correlation function in the following
section.
〈[|ρ(ω)|2 − n

]2〉
=

〈|ρ(ω)|4〉− n2

=
〈
(A + B + C)2

〉− n2 (22)

=
〈
A2

〉
+

〈
B2

〉
+

〈
C2

〉

+2Re(〈AB?〉+ 〈AC?〉+ 〈BC?〉)− n2

=
〈
C2

〉− n2,

recalling facts from sec. V. Now,

〈
C2

〉
=

〈
∑

j

(δnj)2 +
∑

j 6=l

δnjδnle
−ik(zj−zl)




2〉

=

〈
∑

j

(δnj)2




2〉
(23)

+2

〈∑

j

(δnj)2
∑

l 6=m

δnlδnme−ik(zl−zm)

〉

+

〈∑

j 6=l

δnjδnle
−ik(zj−zl)

∑

p 6=q

δnpδnqe
ik(zp−zq)

〉
.

The first term averages to n2, the second term averages
to zero, and the third term averages to zero, except when
j = p and l = q (or j = q and l = p). Hence,

〈[|ρ(ω)|2 − n
]2〉

=
〈
C2

〉− n2 = 2

〈∑

j 6=l

(δnj)2(δnl)2
〉

= 2
∑

j 6=l

NjNl. (24)

For example, if the n particles were uniformly distributed
over m intervals, then Nj = n/m, and

〈[|ρ(ω)|2 − n
]2〉

= 2
( n

m

)2 m(m + 1)
2

≈ n2. (25)

Thus, the rms fluctuations in |ρ(ω)|2 have size n, which
is equal to the average of |ρ(ω)|2 itself! The intensity
fluctuations are 100% at any particular frequency.

When we look at a cloud-free sky on a sunny day, it
is blue, not black and blue! Why don’t we have any
everyday experience of the 100% intensity fluctuations?
The answer is to be found by considering the intensity at
closely neighboring frequencies.

VII. FREQUENCY CORRELATIONS

While the distribution of charges is said to be random,
the relative positions of the charges are fixed during any
particular pulse. The interference among the radiation
from the n charges of a particular pulse depends on the
phase differences arising from the fixed, but random, spa-
tial distribution of the charges. Of course, the phase dif-
ferences also depend on the frequency being observed.

For a small change in frequency, there is only a small
change in the phase differences in a particular pulse.
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Hence, we expect a strong correlation in the amplitude
of the radiation for closely neighboring frequencies. For
a pulse of characteristic length l, the correlation will per-
sist from a given frequency ω to frequency ω′ such that,
roughly, the phase difference in the radiation from elec-
trons separated by distance l = c∆t is different by 180◦
at frequencies ω and ω′. A large amplitude at frequency
ω would then correspond to essentially zero amplitude at
frequency ω′, etc.

The correlation persists over wave numbers such that
∆kl = ∆ω∆t ≈ 1, which translates into a frequency
correlation length of

Γω ≈ 1
∆t

. (26)

On the other hand, for frequencies that differ by a few
correlation lengths, it is not improbable that the inten-
sities have similar values, but with one or more dips to
near zero at intermediate frequencies.

The intensity spectrum appears to consist of spikes of
width Γω, with average separation also Γω. The heights
of the spikes follow the exponential distribution (21) with
mean n times that of the radiation from a single electron
and rms variation equal to the mean.

This spectral structure can only be observed by a de-
tector with a frequency bandwidth larger than Γω. Oth-
erwise, the signal is averaged over the fluctuations, which
latter are then not detectable. For example, the fre-
quency correlation length of the blue sky is much less
than the spectral resolution of our eyes, so we are un-
aware of the 100% intensity fluctuations.

A formal measure of the intensity correlation is the
correlation function:

Γ(ω, ω′) = 〈U(ω)U(ω′)〉 − 〈U(ω)〉〈U(ω′)〉
∝ 〈|ρ(ω)|2|ρ(ω′)|2〉− 〈|ρ(ω)|2〉〈|ρ(ω′)|2〉. (27)

This is expected to be big for ω = ω′, and near zero for
∆ω greater than the correlation length Γω.

The correlation function Γ also arises when considering
fluctuations in the total pulse energy:

〈
U2

〉− 〈U〉2 ∝
〈∫ ∫

|ρ(ω)|2|ρ(ω′)|2dωdω′
〉

−
〈∫

|ρ(ω)|2dω

〉〈∫
|ρ(ω′)|2dω′

〉
(28)

=
∫ ∫

Γ(ω, ω′)dωdω′.

To evaluate the correlation function Γ, we use the no-
tation of (18) that |ρ(ω)|2 = Aω + Bω + Cω. Then,
〈|ρ(ω)|2|ρ(ω′)|2〉 = 〈(Aω + Bω + Cω)(Aω′ + Bω′ + Cω′)〉
= 〈CωCω′〉

=

〈
∑

j

(δnj)2 +
∑

j 6=l

δnjδnle
−ik(zj−zl)





∑

p

(δnp)2 +
∑

p 6=q

δnpδnqe
ik′(zj−zl)




〉

=

〈∑

j

(δnj)2
∑

l

(δnl)2
〉

(29)

+2

〈∑

j

(δnj)2
∑

p6=q

δnpδnq

(
eik(zj−zl) + eik′(zj−zl)

)〉

+

〈∑

j 6=l

(δnj)2(δnl)2ei(k−k′)(zj−zl)

〉

+

〈 ∑

j 6=l 6=p 6=q

δnjδnlδnpδnqe
−ik(zj−zl)e−ik′(zp−zq)

〉

= n2 +
∑

j 6=l

NjNle
i(k−k′)(zj−zl).

Writing k − k′ = ∆k, the correlation function (27) is

Γ(ω, ω′) =
∑

j 6=l

NjNle
i∆k(zj−zl)

≈
∫

dz〈ρ(z)〉ei∆kz

∫
dz′〈ρ(z′)〉e−i∆kz′ . (30)

We consider the example of n charges distributed uni-
formly over a bunch of length l = c∆t, for which 〈ρ(z)〉 =
n/l. Then,

Γ(ω, ω′) = n2 sin2 ∆kl/2
(∆kl/2)2

= n2 sin2 ∆ω∆t/2
(∆ω∆t/2)2

, (31)

where ∆ω = ω − ω′. As expected, Γ is large only for
∆kl = ∆ω∆t < 1.

Thus, the pulsewidth ∆t can be extracted from a mea-
surement of the frequency spectrum of the pulse, by con-
structing the correlation function Γ(ω, ω′) from the ob-
served data, and fitting it to the above form.

Similarly, for a Gaussian bunch of particles with ρ(z) =
ne−z2/2σ2

/
√

2πσ, the frequency correlation function is

Γ(ω, ω′) = n2e−(∆k)2σ2
= n2e−(∆ω)2σ2

t . (32)

Again, the frequency correlation length is ∆ω ≈ 1/σt ≈
1/∆t.

For completeness, we calculate the fluctuations in the
total pulse energy U ∝ ∫ |ρ(ω)|2dω = n

∫
dω.

σ2
U =

〈
U2

〉− 〈U〉2 ∝
∫ ∫

Γ(ω, ω′)dωdω′

= n2

∫ ∫
dωdω′

sin2 ∆ω∆t/2
(∆ω∆t/2)2

≈ n2

∆t

∫
dω (33)

That is,

σ2
U

U2
=

1
∆t

1∫
dω

. (34)
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The integral
∫

dω is roughly the total bandwidth of the
radiation. Since the premise of the entire analysis was
that the total bandwidth be much larger than 1/∆t, we
conclude that the pulse energy fluctuations are small,
but we cannot be much more precise than this without
further assumptions.

VIII. MEASUREMENT ACCURACY

We make a simplified estimate of the accuracy of the
measurement of the pulsewidth ∆t. The measurement
takes place using light near the central frequency ω0. A
spectrometer is used to analyze the radiation into Nω

intervals (bins) of width ∆ω0, where that latter is taken
to be the resolution of the spectrometer. The number of
intervals NΓ corresponding to one frequency correlation
length, Γω ≈ 1/∆t, is then NΓ = Γω/∆ω0 ≈ 1/∆t∆ω0.

Of course, this technique does not work unless the fre-
quency correlation length can be resolved by the spec-
trometer, i.e., unless NΓ ≥ 1. Hence, the technique ap-
plies to short pulses, but is inappropriate for long ones!
For very short pulses, the required number of spectrom-
eter bins NΓ to contain one frequency correlation length
may exceed the available number NΓ, and a measurement
cannot be made. The range of pulsewidths that can be
analyzed is

1
Nω∆ω0

< ∆t <
1

∆ω0
, (35)

always assuming that the pulsewidth is large compared
to 1/ω0.

If the spectrometer had exactly Nω = NΓ frequency
bins, and if only a single pulse were analyzed, a primitive
measurement of the pulsewidth could be made, but the
uncertainty would be essentially 100%. For a spectrom-
eter with a larger value of Nω, but still for only a single
pulse, we would obtain approximately Nω/NΓ separate
measurements of the pulsewidth. Then, in a total of NP

pulses we obtain roughly NPNω/NΓ measurements, and
the relative accuracy of the pulsewidth measurement is
given by

σ∆t

∆t
≈

√
NΓ

NPNω
≈

√
∆t∆ω0

NPNω
=

√
∆t(∆ω0/ω0)ω0

NPNω
, (36)

where we have introduced the resolution of the spec-
trometer, ∆ω0/ω0. Within the domain (35) where mea-
surements are possible, the results are more accurate for
shorter pulses!

For example, consider a spectrometer with ∆ω0/ω0 ≈
10−4 operating with green light (ω0 ≈ 4× 1015/s). With
a detector having ≈ 400 channels (each matched to ∆ω0),
the accuracy of measurement of a single pulse of width
∆t = 1 ps would be

σ∆t

∆t
≈

√
10−12 · 4× 1015 · 10−4

400
≈ 1

30
. (37)

Only 10 pulses would be needed for a 1% measurement.
The arguments in this section have presupposed that

there is enough light detected in each frequency bin that
a classical analysis holds. See sec. XI for a discussion of
quantum effects.

IX. EFFECT OF LIMITED BANDWIDTH

X. TRANSVERSE EFFECTS

In the preceding analysis we have used the simplifying
approximation that the electron bunch is a line source.
Of course, this cannot be true in practice, so we must
consider whether there is any important effect due to the
finite transverse extent of the bunch.

Indeed, if the transverse diameter d of the bunch is too
large there will be significant additional phase differences
between radiation from electrons at different transverse
positions, and the phase information as to the longitu-
dinal structure of the bunch will be diluted. Such con-
cerns were first studied extensively by van Cittert [18]
and Zernike [19], who used the term “transversely coher-
ent” to describe a source for which phase differences from
points at different transverse coordinates are negligible.

In brief, if light of wavelength λ from a source of diam-
eter d is processed through an aperture of diameter D at
distance S from the source, then the additional phase dif-
ferences are negligible if the angular size of the aperture,
D/S, is less that the diffraction angle, λ/d, associated
with light of wavelength λ emitted by a source of diame-
ter d. The largest aperture for which this is true is called
the transverse coherence length, Dcoh, at distance S from
the source, for which

Dcoh ≈ S
λ

d
. (38)

For the present example, it suffices to suppose that the
wiggler parameters were chosen so that the optical radi-
ation was synchrotron radiation (rather than undulator
radiation) near the critical frequency ωC ≈ γ3c/R, where
R is the radius of curvature of the electrons’ trajectory
in the wiggler. Then, as discussed in ref. [8], the radi-
ation has a characteristic angular spread θ0 ≈ 1/γ, and
is exponentially suppressed at larger angles. Therefore,
in the present application, most of the light will be col-
lected by an aperture that obeys D/S = θ0. We desire
that the physical aperture D be equal to the transverse
coherence length Dcoh to avoid loss of longitudinal phase
information. Then, eq. (38) indicates that the electron
bunch should have transverse diameter

d <∼
λ

θ0
(39)

Also, if the electrons in the bunch have an angular
spread θ that is larger than the characteristic radiation
angle θ0, not all of the radiation is useful. The product
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of the transverse size d and angular spread θ is called the
transverse emittance ε of the source. We see from (39)
that the transverse emittance should obey

ε <∼ λ. (40)

Electrons beams that satisfy (40) are said to be of optical
quality. Common units for emittance are mm-mrad =
10−6 m-rad. Since optical wavelengths have λ ≈ 10−6 m,
an optical-quality electron beam must have transverse
emittance less than about 1 mm-mrad.

An interesting variant of the above issues is the ques-
tion: what is the apparent transverse size of the source
of synchrotron radiation from an electron beam of very
small transverse emittance? For example, consider ra-
diation from a single electron, whose transverse position
can be known to a Compton wavelength (≈ 10−11 cm).
However, the apparent source size as determined from its
synchrotron radiation is much larger. Indeed, the laws of
diffraction require that a radiation pattern with charac-
teristic angle θ0 have an apparent source size that we
write as

dcoh ≈ λ

θ0
≈ γλ, (41)

where the second form holds for synchrotron radiation
near the critical frequency. That is, the apparent trans-
verse source size for synchrotron radiation from a single
electron just saturates the van-Cittert-Zernike criterion
(39) for transverse coherence.

In ref. [8], it is shown that this conclusion can be
reached from another another perspective.

XI. QUANTUM EFFECTS

The preceding analysis has been entirely classical so
far as the electromagnetic waves are concerned. The n
charges have, of course, been assumed to have discrete,
identical values. In a quantum view, electromagnetic ra-
diation can be described in terms of photons, and the
pulse energy ∆U = Uω∆ω observed in a frequency in-
terval ∆ω corresponds, on average, to nω = ∆U/h̄ω
photons. Quantum optics is concerned with quantum
effects on the detection of these photons, while acceler-
ator physics is more concerned with quantum effects on
electron beams that radiate photons. Here, we touch on
a few relevant aspects of quantum optics, and conclude
with some brief remarks on quantum fluctuations in elec-
tron storage rings.

A. Bose-Einstein Statistics

What are the fluctuations δnω in the number nω of ob-
served photons? In addition to the classical fluctuations
in the intensity of synchrotron radiation from a bunch of

electrons, which have magnitude 〈nω〉 according to (21),
there are quantum fluctuations of magnitude

√
〈nω〉. So

long as 〈nω〉 > 1, classical considerations dominate. In
general, the two types of fluctuations combine in quadra-
ture to yield

〈
(δnω)2

〉
= 〈nω〉+ 〈nω〉2 = 〈nω〉(〈nω〉+ 1). (42)

This expression is a manifestation of Bose-Einstein sta-
tistics. It appears to have been first applied to the con-
text of photodetectors by Purcell [20] in a commentary
on the Brown-Twiss effect [21–23]. The present consid-
erations of the extraction of information as to pulse size
from intensity correlations in frequency can be consid-
ered a variant the Brown-Twiss effect in which intensity
correlation in time or space give a measure of source size.
For an overview of this subject, see [24].

The probability distribution for which (42) is the vari-
ance was shown by Mandel [25,26] to be

P (nω) =
〈nω〉nω

(1 + 〈nω〉)nω+1
, (43)

which a form of the Bose-Einstein distribution.
The usual caveat to eqs. (42-43) is that they apply only

if the photodetector response time is short compared to
the coherence time 1/∆ω0 of the light being analyzed.
In the present case, this requirement is met by having a
source that emits a pulse of radiation with ∆t < 1/∆ω0,
rather than by having a fast photodetector.

However, for the application of pulsewidth mea-
surement, we remain most interested in the strong-
signal regime in which classical considerations dominate.
Therefore, we desire a clear indicator of when we are in
the classical regime.

B. The Photon Degeneracy Parameter

The distinction between classical and quantum regimes
of optics is usefully characterized by the photon degen-
eracy parameter δω, which is the number of photons per
unit cell of size h3 of 6-dimensional phase volume. The
degeneracy parameter is perhaps more memorably stated
as the number of photons per mode, as introduced by
Einstein [27]. It relevance to optical correlation phenom-
ena was first noted by Brown and Twiss [22].

When the source area is larger than that of the de-
tector aperture, the degeneracy parameter for frequency
interval ∆ω can be restated as the number of photons per
coherence volume Vcoh, where the latter is the product
of the square of the transverse coherence length Dcoh of
(38) and c times the coherence time [28]. In this case,

Vcoh =
cD2

coh

∆ω
(Large source). (44)

However, if the source area is much smaller than that
of the detector aperture, as holds for studies of syn-
chrotron radiation, the transverse phase volume at the

8



detector contains strong rPr correlations, where r is the
radial coordinate on the detector surface. In this case,
it is more appropriate to define the coherence volume
in terms of the transverse coherence length dcoh at the
source (eq. (41) for synchrotron radiation), rather than
at the detector:

Vcoh =
cd2

coh

∆ω
(Small source). (45)

To verify this, note that for a transversely small source,
the angular spread θ of the light is of order θ = λ/dcoh.
The transverse momentum of the light then has spread
∆P⊥ ≈ Pθ ≈ (h/λ)(λ/dcoh) = h/dcoh, so dcoh∆P⊥ ≈ h.
The longitudinal momentum spread within a frequency
interval ∆ω0 is ∆P‖ = h̄∆ω/c, so ∆P‖c/∆ω ≈ h. Alto-
gether,

∆P 2
⊥∆P‖Vcoh ≈ (∆P⊥dcoh)2∆P‖

c

∆ω
≈ h3, (46)

as desired.
To estimate the degeneracy parameter for synchrotron

radiation, we note that according to eq. (2) of [8], the
photon spectrum from a single electron as observed at a
frequency ω ≤ ωc in a detector that subtends solid angle
θ2
0 has the remarkably simple form

nω ≈ α
∆ω

ω
, (47)

where α = e2/h̄c ≈ 1/137 is the fine structure constant.
The transverse extent of this radiation at the source is
just dcoh, as discussed in sec. IX. Its longitudinal extent
is c∆t, i.e., the pulsewidth. Hence, the photon number
density ρω of synchrotron radiation from Ne electrons as
it leaves the source is

ρω ≈ Neα∆ω

ωd2
cohc∆t

, (48)

and the photon degeneracy number is

δω = ρωVcoh ≈ Neα

ω∆t
≈ Neα

λ

c∆t
, (49)

using (45).
For example, in the experiment of Catravas et al. [4],

Ne ≈ 109, λ ≈ 600 nm, and ∆t ≈ 2 ps, so the photon
degeneracy parameter was δω ≈ 104. Quantum statistics
played very little role in that experiment.

The degeneracy parameter allows us to assign an ef-
fective temperature to synchrotron radiation, which we
noted earlier is an excellent example of what has been
called a thermal source. As Einstein showed [27], the
degeneracy parameter for blackbody radiation at tem-
perature T is

δω =
1

eh̄ω/kT − 1
, (50)

where k is Boltzmann’s constant. For high temperatures,
δω ≈ kT/h̄ω. Thus, for the experiment in which δω ≈ 104

and h̄ω ≈ 2 eV, the effective temperature is kT ≈ 2 ×
104 eV, or T ≈ 2.5 × 107K. In this sense, synchrotron
radiation provides a very hot source.

It is interesting to note that sunlight has a degener-
acy parameter δω ≈ 0.02, corresponding to black-body
radiation at T ≈ 6, 000K.

C. Quantum Fluctuations in Electron Storage Rings

When one considers the effect of quantum fluctuations
on electrons circulating in a storage ring, a different and
much lower effective temperature than that deduced from
(50) is relevant.

Damping, Hawking-Unruh.....
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