Errors & Dilutions

in Measurements of CP Violation in B-\bar{B} System

K. T. McDonald

Princeton U.

June 30, 1992

SSC B-Physics Mini Workshop

We propose to measure a CP-violating asymmetry:

\[
A = \frac{\Gamma(B \rightarrow f) - \Gamma(\bar{B} \rightarrow \bar{f})}{\Gamma(B \rightarrow f) + \Gamma(\bar{B} \rightarrow \bar{f})}
\]

\[N = \text{Total number of } B \rightarrow f \neq \bar{B} \rightarrow \bar{f} \text{ decays}
\]

\[S = \frac{A}{\sigma_A} \text{ = Statistical significance in standard deviations}
\]

\[
S = \sqrt{N} \frac{A}{\sqrt{1 - A^2}}
\]

Extra statistical power for \(A \approx 1\)

For small to moderate \(A\), approximate:

\[S \approx \sqrt{N} A
\]

or \[N \approx \left(\frac{S}{A}\right)^2
\]

Example: \(A = 0.1\)

\[S = 3 \leq
\]

\[\Rightarrow N \times 900 \text{ events required.}
\]
In practice (at least) 4 effects 'dilute' the statistical power:

1. If \(B = B^0 \), mixing oscillations reduce the asymmetry.

2. If \(B \rightarrow f \) where \(f \) is a CP eigenstate \((\bar{f} \rightarrow \bar{f})\) must tag the particle-antiparticle character of the \(B \) by observation of the second \(B \) in the event.

3. If the second \(B \) is a \(B^0 \), its oscillations dilute the tag.

4. The signal of \(B \rightarrow f \) may be subject to a background that is CP invariant.

Effect of Mixing of the First \(B \)

Pure \(B^0 \) at \(t = 0 \):

\[
\begin{align*}
|B^0(t)\rangle &= e^{\frac{i M t}{2}} e^{\frac{\Delta M t}{2}} \\
|\bar{B}^0(t)\rangle &= i e^{-\frac{i M t}{2}} e^{-\frac{\Delta M t}{2}}
\end{align*}
\]

Etc ...

Assuming we know the particle-antiparticle character of the \(B \) at time \(t \) when it decays:

Write

\[
A(t) = \frac{\Gamma(B^0(t) \rightarrow f) - \Gamma(B^0(t) \rightarrow \bar{f})}{\Gamma(B^0(t) \rightarrow f) + \Gamma(B^0(t) \rightarrow \bar{f})} = \sin^2 \theta \quad \sin \chi \int 2 \phi
\]

\(\chi \) = angle of unitarity triangle when \(f \) = CP eigenstate

\(\sin \chi = \frac{\Delta M}{M} = \text{mixing parameter} \); \(\sin \chi \sim 0.7 \) (measured)

\(\sin \chi \sim 5-10 \) (estimated)

CP-violating interference between mixing and decay vanishes at \(t = 0 \).
A. Small x (b^0_k): B^- decay before completing one oscillation.

- Time-resolved experiment essentially the same as time integrated:

$$A \approx \frac{\int \frac{\Gamma(B \to f)}{\Gamma(B \to f)} - \int \frac{\Gamma(B \to f)}{\Gamma(B \to f)}}{\int + \int} = \frac{k}{1 + k^2} \text{ Dilution factor } D_1$$

Small x \Rightarrow No asymmetry

Little point in detailed time studies.

B. Larger x (B^0_k): Several oscillations before decay.

- Time-resolved asymmetry essentially averages over one half-cycle at a time (reversing the form of the asymmetry each half cycle).

$$A \to \frac{2}{\pi} \text{ Dilution factor } D_1$$

\Rightarrow Must know which half-cycle decay occurred in.

\Rightarrow Must know N. But N cannot be measured by decays $B^0_k \to f_{CP}$. Unless there is CP violation. In particular, we don't expect CP violation in $B^0 \to J/\psi \phi$.

C. General case: $A = D_1(x) \approx 2k$
Effect of Oscillations of the Second B

Observe particle-antiparticle character of the second B to infer particle-antiparticle character of the first B ($B \to f_{CP}$)

If second B is a B^0, it may have oscillated to \bar{B}^0 before decaying.

Integrated probability that a B^0 at $t=0$ decays as \bar{B}^0 is

$$p = \frac{\lambda^2}{2(1+\lambda^2)}$$

The useful number of tags is

$$N_{(B^0 \to B^0)} - N_{(B^0 \to \bar{B}^0)} = N(1-2p) = N \frac{1}{\frac{1+\lambda^2}{\text{Dilution Factor}} D_2}$$

Second B is B^+: $D_2 = 1$

B_{d}^0: $D_2 = \frac{1}{1+\lambda^2} \approx \frac{1}{3}$

B_{s}^0: $D_2 = \frac{1}{1+\lambda^2} \approx 0$ (useless as tag)

Proportions of second B:

$D^+_s : D^+_d : D^0_s = \epsilon : \epsilon : 1 - 2\epsilon$

With $\epsilon \sim \frac{1}{3}$ (to be measured!)

Effective Dilution Factor:

$$D_2 = \sqrt{\epsilon} \text{ for } B^+, \text{ as have only } \epsilon \text{ as most events as for all } B's$$

$$D_2 = 0.1 + \frac{1}{1+\lambda^2} + \frac{1-2\epsilon}{1+\lambda^2} \approx \frac{5\epsilon}{3} \text{ for all } B's$$

$$\frac{D_2(\text{all } B^0s)}{D_2(\text{all } B^+)} = \frac{5\sqrt{\epsilon}}{\frac{5\epsilon}{3}} \approx 1$$

\Rightarrow No advantage to tagging only with B^\pm.

\[\]
Footnote on tagging via \(B^+ \) vs. all \(B^- \)

Let \(N_0 = \# \) of reconstructed \(B^+ \to f_{\text{CP}} \) required for some measurement, not yet taking into account tagging via the second \(B \).

\[N_1 = \# \text{ of } B^+ \to f_{\text{CP}} \text{ required so that } N_0 \text{ of them will be tagged via a second } B^+ \]

\[N_2 = \# \text{ required if tag via any second } B^- \]

\[E = \frac{\frac{N_2}{\text{ALL } B^-}}{\text{ALL } B^-} \leq \frac{3}{8} \]

\[N_1 = \frac{N_0}{E (D_2)} \]

Since dilution factor \(D_2 \):

\[\text{for } B^+ \]

\[N_2 = \frac{N_0}{(D_2)} \cdot \frac{9}{(5E)^2} \cdot \frac{N_1}{25} = \frac{24}{25} N_1 \]

There is no statistical advantage to use of a tag on \(B^+ \) only!

[We have ignored possible differences in detection efficiency and mistagging probability for tagging via different \(B^- \)s, but expect these differences to be small.]

(3) Mistagging of Second \(B \)

Suppose only partial reconstruction of second \(B \):

\[b \to c \to s \]

\(\ell \text{ observe } K^+ \text{ or } K^- \)

\[b \to c \ell \nu \]

\(\ell \text{ observe } \ell^+ \text{ or } \ell^- \)

\(P = \text{probability of assigning wrong sign} \)

Effective fraction of correct tags is \(P_{\text{right}} - P_{\text{wrong}} \)

\[\Rightarrow D_3 = 1 - 2P \]

(4) Non Resonant Background

The first \(B \) is fully reconstructed, but may have background in the mass plot.

\[b = \frac{\text{background}}{\text{signal}} \]

In general, there will be no CP violation in the background events, so

\[A \to \frac{1}{1 + b} \]

\[\text{dilution factor } D_4 \]

211
Summary of Dilution Factors

\[A_{\text{obs}} = D_1 D_2 D_3 D_4 \Delta \zeta \Delta \eta \]

Need \(N \approx \left(\frac{S}{A_{\text{obs}}} \right)^2 \) Tagged Events to Measure

\[\Delta \zeta \Delta \eta \text{ to } S \text{ standard deviations} \]

\[N \approx \left(\frac{1}{D_1 D_2 D_3 D_4} \right)^2 \left(\frac{S}{\Delta \zeta \Delta \eta} \right)^2 \]

Example: For \(B_d \)

\[D_1 = \frac{k}{1 + k^2} = \frac{1}{2} \]

\[D_2 = \frac{S}{3} \cdot \frac{S}{3} \cdot \frac{3}{8} = \frac{5}{8} \text{ (tag on all } B') \]

\[D_3 = 1 - 2P \approx 0.1 \text{ at hadron collider} \]

\[D_4 = \frac{1}{1 + b} \approx 1 \text{ for clean mode (3/4 K_\text{s})} \]

\[D_1 D_2 D_3 D_4 \approx \frac{1}{4} \]

\[N \approx 16 \left(\frac{S}{\Delta \zeta \Delta \eta} \right)^2 \]

\[N \text{ for } S = 3, \Delta \zeta \Delta \eta = 0.1 \text{ need } N \approx 14,400 \]

\[N^2 \left[\frac{1}{1 + k^2 (1 - 2P)} \right]^2 \left(\frac{S}{\Delta \zeta \Delta \eta} \right)^2 \approx 6 \left(\frac{S}{\Delta \zeta \Delta \eta} \right)^2 \]

Tagging via Leptons and Kaons

What fraction of \(b \to f_{CP} \) decays can be correctly tagged?

\[b \to c \to s \text{ or } c \text{ or } k \]

\[b \to c \to l^+ \text{ or } \mu \]

What-Side \(K, \pi, \text{ or } \mu \) occur via other stages of decay cascade.

ISAJET Study: Tag via highest \(P_T \) \(k^+, l^+, \text{ or } \mu^+ \) in rest of event.

No secondary vertex requirement on tagging particle.

(Favored if correct tagging probability is larger than secondary vertex efficiency.)

K's Best Options:
Figure 4: The fraction of leptons (or Kaons) that have the wrong sign as a function of P_T.

Figure 5: Differential and integral tagging efficiencies of four types of tags as a function of transverse momentum. Left-hand plots: the number $N |1 - 2p|$ of useful tagged events; right-hand plots: the total efficiency of the tag as a function of the minimum-transverse-momentum requirement. The four tags are, from top to bottom, electron, muon, combined electron and Kaon, and Kaon.
Alternative Analyses of CP-Violating Asymmetries

In Sec. 6.2 of Ref. [1] we noted that our proposed method of analysis of CP violation in the neutral B system would yield a null result if we integrate over time and if the $B \bar{B}$ pair was produced in a C_{odd} state. As the latter condition holds for B's produced at the $B(4S)$ resonance at an e^+e^- collider, this analysis would be inappropriate there. A clever alternative procedure has been proposed[9] that maximizes the analyzing power at an e^+e^- collider. Here we examine whether this procedure would be effective at a hadron collider.

Both B^+'s of a produced $B\bar{B}$ pair must be observed in a $C\bar{P}$ analysis. We label B_0 as the (neutral) B that decays to the $C\bar{P}$ eigenstate f, and B_1 as the (charged or neutral) \bar{B} that decays to a state $g \neq f$ that permits us to determine whether B_1 was a particle or antiparticle at the moment of its decay. We can accumulate four time distributions, where one B decays at time t, and the other at time $t + t_f$ with $t < t_f$:

\[
I : \Gamma_{B_0 \rightarrow f(t)} \Gamma_{B_1 \rightarrow g(t)} \\
II : \Gamma_{B_0 \rightarrow f(t)} \Gamma_{B_1 \rightarrow g(t + t_f)} \\
III : \Gamma_{B_0 \rightarrow f(t)} \Gamma_{B_1 \rightarrow g(t - t_f)} \\
IV : \Gamma_{B_0 \rightarrow f(t)} \Gamma_{B_1 \rightarrow g(t + t_f)}
\]

The four distributions can be combined to form asymmetries in various ways:

\[A_1(t, t_f) \equiv \frac{I + IV - I - II}{I + IV + I + IV}.
\]

Another asymmetry is

\[A_2(t, t_f) \equiv \frac{I + III - I - IV}{I + III + I + IV},
\]

as considered in Ref. [2]. A third might be defined as

\[A_3(t, t_f) \equiv \frac{I + III - I - IV}{I + III + I + IV}.
\]

For the case that mesons 1 and 2 are of the same type the four time distributions take the form

\[
\Gamma_f(t, t_f) \propto e^{-i(t + t_f)}[1 \pm \sin 2\psi \sin z(t_0 + t)],
\]

\[
\Gamma_{II}(t, t_f) \propto e^{-i(t + t_f)}[1 \pm \sin 2\psi \sin z(t_0 + t_f)],
\]

\[
\Gamma_{III}(t, t_f) \propto e^{-i(t + t_f)}[1 \pm \sin 2\psi \sin z(t_0 + t_f)],
\]

\[
\Gamma_{IV}(t, t_f) \propto e^{-i(t + t_f)}[1 - \sin 2\psi \sin z(t_0 + t_f)],
\]

where ψ is the CP-violating phase in the decay amplitude for $B_1 \rightarrow f$. $z = \Delta M / t$ is the mixing parameter for neutral B-meson, and the lower sign in the distributions holds for C_{odd} states $|B_1\rangle |B_2\rangle - |B_1\rangle |B_2\rangle$. In the above, time is measured in units of the lifetime $1/t$.

Inserting the time distributions into the forms for the asymmetries we have

\[A_1 = \begin{cases} 0 & C_{\text{odd}} \\ \sin 2\psi \sin z(t_0 + t_f) & C_{\text{even}} \end{cases},
\]

\[A_2 = \begin{cases} \sin 2\psi \sin z(t_0 - t_f) & C_{\text{odd}} \\ 0 & C_{\text{even}} \end{cases},
\]

\[A_3 = 0.
\]

Clearly the asymmetry A_2 will be useful at an e^+e^- collider where only C_{odd} states are produced.

As we have noted elsewhere, in B_d decays where $x_d \approx 0.7$ there are about nine lifetimes per oscillation, and so a time-resolved analysis is actually little different than a time-integrated one. Hence it is relevant to consider the time-integrated forms of the asymmetries.

Because of the time ordering in the definition of the distributions I-IV, the form of the integrals is

\[
\int_0^\infty dt \int_0^\infty dt_f \Gamma_f(t, t_f),
\]

etc. On evaluating these integrals for the case that meson B_1 is of the same type as B_2, we find

\[A_1 = \begin{cases} 0 & C_{\text{odd}} \\ 2z \sin 2\psi / (1 + x^2) & C_{\text{even}} \end{cases},
\]

while

\[A_2 = \begin{cases} z \sin 2\psi / (1 + x^2) & C_{\text{odd}} \\ 0 & C_{\text{even}} \end{cases}.
\]

At a hadron collider the $B\bar{B}$ pairs are produced in C_{even} and C_{odd} states with equal probability, so the question arises as to which asymmetry is to be preferred to attain maximum sensitivity to the CP-violating factor $sin 2\psi$. Note that the nonzero cases of the asymmetries are affected by the dilution due to mixing in different ways:

\[A_1(C_{\text{even}}) = \frac{2}{1 + x^2} A_3(C_{\text{odd}}).
\]

For the case of $B_d \bar{B}_d$ production where $x_d \approx 0.7$, the factor $2 / (1 + x^2) \approx 4 / 3$, so asymmetry A_1 is slightly to be preferred over A_3.

However, at a hadron collider a B_d meson can be produced along with any of a \bar{B}_d, \bar{B}_s, or B_s Table 1 lists the coefficients K of $sin 2\psi$ for the various possibilities of $B\bar{B}$ production for the two asymmetries. On weighting by the relative production rates we estimate that A_1 is about 1.5 times as large as A_2 at a hadron collider, so clearly should be used.
Table 1: The coefficient K in time-integrated CP-violating asymmetries of the form $A = K \sin 2\phi$ for various possibilities for $B_d \bar{B}_d$ production at a hadron collider. The weighted coefficient is obtained supposing $\pi_d = 0.7, \pi_u \gg \pi_d$, and that B_d, B_u, and B_s mesons are produced along with a B_d in the proportion $0.375 : 0.375 : 0.25$. We have assumed that the lifetimes of all three flavors of B mesons are the same.

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>$B_d \bar{B}_d$</th>
<th>$B_u \bar{B}_u$</th>
<th>$B_s \bar{B}_s$</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\frac{\pi_d}{1+\pi_d}$</td>
<td>$\frac{\pi_u}{1+\pi_u}$</td>
<td>$\frac{\pi_s}{1+\pi_s}$</td>
<td>0.25</td>
</tr>
<tr>
<td>A_2</td>
<td>$\frac{\pi_u}{1+\pi_u}$</td>
<td>$\frac{\pi_u}{1+\pi_u}$</td>
<td>$\frac{\pi_s}{1+\pi_s}$</td>
<td>0.16</td>
</tr>
</tbody>
</table>

In Ref. [1] we considered the asymmetry

$$A(t_4, t_6) = \frac{\Gamma_{B_d \rightarrow \ell \ell}(t_4) \Gamma_{B_{u} \rightarrow \ell \ell}(t_6)}{\Gamma_{B_d \rightarrow \ell \ell}(t_4) + \Gamma_{B_{u} \rightarrow \ell \ell}(t_6)} = \sin 2\phi \sin (\tau_4 t_4 \pm \epsilon_4 t_4),$$

where there was no restriction on t_4 and t_6, and the minus sign holds for $C(\text{odd})$ states. This asymmetry is not quite the same as A_1 or A_2, but the time integrated version of this is identical to the time integrated version of A_1. That is, in the time integrated version of A_1, we effectively lose sight of the time ordering of t_4 and t_4.

For a final comparison, the coefficient K that holds for use of asymmetry A_2 at an e^+e^- collider is 0.5. This means that the average dilution due to mixing at an e^+e^- collider is one half of that at a hadron collider. Equivalently, we will need four times as many tagged reconstructed $B_d \bar{B}$ decays at a hadron collider as at an e^+e^- collider to achieve the same sensitivity to $\sin 2\phi$. Stated yet another way, the smallest value of $\sin 2\phi$ that can be resolved to three standard deviations with N events at a hadron collider is $12/\sqrt{N}$, while at an e^+e^- collider this would be $6/\sqrt{N}$.

1 References

