2.7 GeV/c momentum kick and is dispersed to eliminate noncosmic-ray particles from the incident beam. The target is the mass selection magnet which is made from 280 kg magnets and is surrounded by a vacuum with no mass in the beam. Compton scattered electrons from the target are detected in a NaI(Tl) detector. Interaction of the target are at a Fermi-proton rest mass. Incident protons with momenta of 7 to 50 GeV/c enter the target and interact, incident protons with momenta of 7 to 50 GeV/c enter the target.

Figure 1 shows the layout of the experiment, which is located in the experimental area of the Fermi National Laboratory. The main goals include a high-statistics analysis of the muon interactions. The experiment is designed to study high-x muon pair production in planar target experiments. The experiment is designed to study high-x muon pair production in planar target experiments.
The raw mass distribution of 2.9 GeV particles is shown in Figure 3. After a cut has been imposed requiring that the two muons recombine to the target, the mass distribution expected at 9 GeV/c² is

The mass resolution is very sensitive to the full-cone configuration, and we hope to improve it in the next run.

-273-