I. THE EFFECTIVE-POTENTIAL TECHNIQUE

We consider the precession of the orbit of a particle moving under the influence of a central force that departs slightly from the Newtonian form. Exact solutions are not generally available in this case, so we seek approximate methods. In this section we use the effective-potential technique to express the noncircular orbit in the approximate form

\[r \approx r_0 (1 + \varepsilon \cos \alpha t), \]

(1)

which is an accurate representation only if \(\varepsilon \ll 1 \), due to the neglect of higher-order terms. We believe this technique to be the most reliable in dealing with perturbations from circular orbits, but leave the reader to judge its merits compared to other methods presented in the following sections.\(^5\)

For motion under a central force,

\[\mathbf{F} = -G(r) \mathbf{\hat{r}}, \]

(2)

the total energy is conserved:

\[E = \frac{1}{2} \frac{m^2 v^2}{2mr^2} = \frac{L^2}{2mr^2} + \int G(s) ds, \]

(3)

where the dependence on \(\theta \) has been eliminated via the conserved angular momentum \(L = mr^2 \dot{\theta} \). This reduces the problem of radial motion to that caused by the effective potential

\[V_{\text{eff}}(r) = \frac{L^2}{2mr^2} + \int G(s) ds. \]

(4)

In this approach it is useful to think of the orbit parameters \(r_0 \) and \(\varepsilon \) in (1) as dependent on the constants of the motion \(E \) and \(L \).

For a specified value of angular momentum \(L \), there is a circular orbit at constant \(r_0 \) given by

\[\frac{dV_{\text{eff}}(r_0)}{dr} = -\frac{L^2}{mr_0^3} + G(r_0) = 0. \]

(5)

Introducing \(\Omega \) as the angular velocity of the equilibrium circular orbit, we have

\[L = mr_0^2 \Omega \]

(6)

and

\[G(r_0) = L^2/(2mr_0^2) = mr_0 \Omega^2. \]

(7)

On expanding the effective potential about \(r_0 \) and supposing that \(r - r_0 \) is small, the equation of motion becomes

\[m \ddot{r} = F_{\text{eff}}(r) = -\frac{dV_{\text{eff}}(r)}{dr} \approx -\frac{d^2V_{\text{eff}}(r_0)}{dr^2} (r - r_0). \]

(8)

For motion that departs from the circular orbit, we have oscillatory solutions whose radial dependence has the form (1). The associated angular motion is obtained via conservation of angular momentum:

\[\dot{\theta} \approx \Omega - 2 \varepsilon (\Omega/\alpha) \sin \alpha t. \]

(9)

The frequency \(\alpha \) of the oscillatory motion is found from (8) as

\[\alpha = \sqrt{(1/m) d^2 V_{\text{eff}}(r_0)/dr^2}. \]

(10)

On use of (6) and (7) in (10) we find

\[\alpha = \Omega \sqrt{3 + r_0 G''(r_0)/G(r_0)}. \]

(11)

For \(G(r) \approx k/r^2 \), \(\alpha \) is approximately equal to \(\Omega \) and we may expand

\[\alpha = \Omega (1 + [2 + r_0 G''(r_0)/2G(r_0)] \approx \Omega (2 + r_0 G''(r_0)/2G(r_0)). \]

(12)

The perihelion of the noncircular orbit, (1), precesses with angular velocity \(\omega \) given by

\[\omega = \Omega - \alpha \approx \Omega [1 + r_0 G''(r_0)/2G(r_0)]. \]

(13)

The problem at hand is the case of a small departure from the Newtonian force law:

\[\mathbf{F} = (k/r^2) \mathbf{\hat{r}} + B(r) \mathbf{\hat{r}}. \]

(14)

Then (13) leads to the angular velocity of precession as

\[\omega = B(r_0)/mr_0 \Omega + B'(r_0)/2m \Omega. \]

(15)

II. ERRONEOUS USE OF THE LENZ VECTOR

Although the above approach follows the basic line of attack in all problems of small oscillations about equilibrium, it is apparently too lengthy for some people's taste. Greenberg\(^4\) has proposed a much quicker derivation based on the Lenz vector.

We recall that the Lenz vector,

\[\mathbf{A} = \mathbf{r} \times \mathbf{p}/km, \]

(16)

is a constant of the motion in the case of the central force

\[\mathbf{F} = -(k/r^2) \mathbf{\hat{r}}. \]

(17)
As noted by Greenberg, the constancy of A is readily verified with the useful relation that
\[\frac{d\mathbf{r}}{dt} = \frac{L}{mr^2} \times \mathbf{r}. \]
(18)

We now consider the effect of a small correction, $B(r)$, to the Newtonian force, as in (14). We again desire an expression for ω, the rate of precession of the perihelion of the orbit. The vector ω is of course parallel to the angular momentum L.

The hypothesis of Greenberg is that ω can be found by supposing the vector A rotates with angular velocity ω. While this hypothesis is sound, the method used by Greenberg to evaluate ω is inaccurate.

Here we follow the derivation as given by Greenberg to compare with the standard result (15). We look for a time dependence of A of the form
\[\frac{dA}{dt} = \omega \times A. \]
(19)

Direct differentiation of (16), combined with (14) and (18), leads to
\[\frac{dA}{dt} = \frac{B(r)}{km} \times \mathbf{r}, \]
while we also find by direct substitution into (16) that
\[\omega \times A = \omega \times \mathbf{r} - [(\omega \times L)/km] \mathbf{r}. \]
(20)

The argument of Greenberg is that ω averages to zero over a closed orbit, and that $B(r)$ in (20) may be averaged to $B(r_0)$, leading to
\[\omega = [B(r_0)/km]L \quad \text{and} \quad \omega = B(r_0)/mr_0. \]
(21)

We see that the result (22) bears some resemblance to the correct form (15), but the dependence of ω on the derivative of the force field is missing in (22). The authors of Refs. 1 and 2 may have been misled by the coincidence that for the case $B(r) = C/r^3$, the absolute values of ω found with (15) and (22) are the same, although the signs are opposite. Thus the second term in (15) is actually the larger for some cases of interest, and its absence cannot be excused as neglect of a small correction.

III. CORRECT USE OF THE LENZ VECTOR

A correct use of the Lenz vector for non-Newtonian potentials has been presented in this Journal by Sivardière, without mention of the attempt by Greenberg to solve the same problem. Here, we recast the argument of Sivardière into the notation used above.

First, it is useful to note that for the Newtonian potential, $V = -k/r$, the (constant) Lenz vector A of (16) is oriented along the major axis of the elliptical orbit, and has magnitude equal to the eccentricity e of the orbit. To see this, we introduce θ as the angle between A and radius r and evaluate the scalar product:
\[A \cdot r = Ar \cos \theta = r + L \times \mathbf{r} \times km \cos \theta = -L^2/km, \]
using (16). On solving for r, we have
\[r = L^2/km (1 - A \cos \theta), \]
(24)

which verifies the interpretation A as the "eccentricity vector," with the magnitude A being equal to the eccentricity e of the orbit.

We reexamine the argument of Sec. II beginning at (20). Greater care is required in calculating the time average of this expression. First, we decompose
\[\dot{r} = \dot{e} \cos \theta + \dot{\theta} \sin \theta, \]
(25)

where \dot{e} is a unit vector along the initial direction of A, and $\dot{\theta} = L \times \dot{e}$ is a unit vector orthogonal to \dot{e} and L. Then the desired time average is
\[\langle \frac{dA}{dt} \rangle = \frac{L}{km} \times \dot{e} \langle B(r) \cos \theta \rangle - \frac{L}{km} \times \dot{\theta} \langle B(r) \sin \theta \rangle. \]
(26)

We will evaluate the time average of a function f as
\[\langle f(r) \rangle = \frac{1}{T} \int_0^T f(r) dt = \frac{1}{T} \int_0^{2\pi} f(\theta) \frac{dt}{d\theta} \)
\[= \frac{\Omega m}{2\pi L} \int_0^{2\pi} r^2 f d\theta, \]
(27)

where $T = 2\pi/\Omega$ is the period of the orbit. The use of 2π as the period of the orbit in angle θ is not strictly correct for the precessing orbits under consideration and limits the accuracy of the method of this section independent of the approximations (28) and (29) used below.

Following the approximation of (1), we write
\[r \approx r_0 (1 + \epsilon \cos \theta), \]
(28)

and so
\[B(r) \approx B(r_0) + (r - r_0) B'(r_0). \]
(29)

On inserting (27)-(29) into (26), only the integrals in $\cos^2 \theta$ will be nonzero, leading to
\[\langle \frac{dA}{dt} \rangle = \frac{r_0^2 \Omega}{2k} [2B(r_0) + r_0 B'(r_0)] \times \dot{e} \dot{\theta} = \omega \times A, \]
(30)

with
\[\omega = (r_0^2 \Omega/2k) [2B(r_0) + r_0 B'(r_0)]. \]
(31)

Noting that $k \approx m \Omega^2 r_0$, we obtain the result (15) of Sec. I. This vindicates the insight of Greenberg that the Lenz vector A points along the precessing major axis of the orbit of a particle in a non-Newtonian potential. Sivardière notes that the Lenz vector technique may be used for orbits with arbitrary eccentricity e, although the method is accurate only if the perturbation $B(r)$ is small. (This remark holds for the method of Sec. IV as well.) Sivardière also gives examples of the use of the Lenz vector for orbits perturbed by noncental forces. It remains that considerable care is required when using the Lenz vector.

IV. THE METHOD OF AVERAGES

The precession of orbits offers an instructive illustration of the so-called method of averages of Krylov and Bogoliubov. This technique arose from the problem of characterizing the solutions of nonlinear differential equations. When applied to the Kepler problem it proves to be closely related to the averaging of the Lenz vector discussed in Sec. III.

The starting point in the present case is the "orbit equation" obtained in the usual way from $F = ma$ via the substitution
\[u = 1/r, \]
(32)
and after elimination of the time \(t \) in favor of polar angle \(\theta \):

\[
\frac{d^2 u}{d\theta^2} + u = \frac{km}{L^2} - \frac{mB(u)}{L^2u^2}.
\]

(33)

Here we have assumed a central force of the form (14). If the small correction \(B \) were actually zero, we immediately find the standard elliptical orbit

\[
u = 1/r = \frac{1}{(1/r_0)[1 - \epsilon \cos \theta]},
\]

(34)

where \(r_0 = L^2/km \) is the average radius.

The approach of Krylov and Bogoliubov is to seek a solution when \(B \) is nonzero of the form

\[
u = (1/r_0)[1 - \epsilon(\theta)\cos(\phi(\theta))].
\]

(35)

This introduces two unknown functions, \(\epsilon \) and \(\phi \), so Eq. (33) alone will be insufficient to determine them. As the needed second condition we ask that the derivative of \(u \) with respect to \(\theta \) have the same form as when \(B \) is zero:

\[
\frac{du}{d\theta} = \frac{\epsilon}{r_0} \sin \phi.
\]

(36)

On substituting (36) into (33), and (35) into (36) we can solve for the derivatives of \(\epsilon \) and \(\phi \) with respect to \(\theta \):

\[
\frac{d\epsilon}{d\theta} = -\frac{B(u)}{ku^2} \sin \phi,
\]

(37)

\[
\frac{d\phi}{d\theta} = 1 - \frac{B(u)}{eku} \cos \phi.
\]

(38)

The method of averages consists in approximating the right-hand sides of (37) and (38) by their averages over one period in \(\phi \).

To implement this, we need a further approximation for the factor \(B/u^2 \):

\[
1/u^2 = r_0^2/(1 - \epsilon \cos \phi)^2 \approx r_0^2(1 + 2\epsilon \cos \phi),
\]

(39)

\[
B(u) \approx B(r_0) + (r - r_0)B'(r_0)
\]

\[
\approx B(r_0) + \epsilon r_0 \cos \phi B'(r_0),
\]

(40)

\[
B(u)/u^2 \approx r_0^2(B(r_0)) + \epsilon [2B(r_0) + r_0B'(r_0)]\cos \phi.
\]

(41)

From (41) and (37) we see that \(\epsilon \) is constant on average over many orbits, as expected. On combining (41) and (38) and averaging \(\cos \phi \) to \(1/2 \), we find

\[
\frac{d\phi}{d\theta} \approx 1 - \frac{r_0}{2k} [2B(r_0) + r_0B'(r_0)].
\]

(42)

In the notation of Eqs. (1) and (10), we have \(\phi = \alpha t \) and \(\phi \approx \Omega t \), so \(d\phi/d\theta \approx \alpha/\Omega \), and the angular velocity of precession is

\[
\omega = \Omega - \alpha \approx (r_0^2\Omega/2k) [2B(r_0) + r_0B'(r_0)].
\]

(43)

Noting that \(k \approx m\Omega^2 r_0^2 \), Eq. (43) reduces to our previous result (15).

5The effective-potential technique has been correctly applied to the present problem by two of us in: Carlos Farina and Alexandre Tort, “A simple way of evaluating the speed of precession of orbits,” Am. J. Phys. 56, 761–763 (1988). However, we did not point out the discrepancy between the result of this paper and that of Ref. 1.

Faraday rotation in the undergraduate advanced laboratory

Frank L. Pedrotti and Peter Bandettini

Physics Department, Marquette University, Milwaukee, Wisconsin 53233

(Received 10 April 1989; accepted for publication 10 July 1989)

A Faraday rotation experiment is described for laser beams of two wavelengths in moderate magnetic fields, using flint glasses of large rotary birefringence and (liquid) carbon disulphide. Results show a linear relation between angle of rotation and field strength, and indicate a strong dependence on wavelength, attributable to the dispersion, which is determined from a measurement of the Verdet constant. The theoretical treatment and experimental technique are recommended for the advanced undergraduate laboratory.

I. INTRODUCTION

Faraday rotation provides an excellent experiment for the upper division, undergraduate physics, or engineering student, combining elements of polarization optics with magnetism and atomic physics. The experiment has been made more elegant in recent times due to the availability of relatively inexpensive laser sources and rather esoteric