PROGRESS REPORT -- EXPERIMENTS 331/444

Mu-Pair Production by \(\pi^+, \pi^- \), and Protons in the
Chicago-Cyclotron Spectrometer

Enrico Fermi Institute, University of Chicago
Chicago, Illinois 60637

and

Joseph Henry Laboratories, Princeton University,
Princeton, New Jersey 08540

10 June 1976

I. INTRODUCTION

The data-taking phase of E-331 was concluded on 22 March 1976, after
a test run in June 1975 and a 3 month run from December 1975 – March 1976.
Since that time, we have been analyzing the data acquired, and have com-
pleted the analysis of the June 1975 data. The first results from last
June (150 GeV/c \(\pi^+\)-Be and p-Be Collisions) have been discussed at confer-
ences¹ and published in Phys. Rev. Letters.² Preliminary results of the
run just completed (225 GeV Collisions of \(\pi^+, \pi^- \), and protons with Carbon
and Tin Targets) have been described at the Washington APS meeting³, and
contributions have been sent to the Tbilisi conference. At this time 25%
of the data have been analyzed, and some features are already emerging,
as will be discussed below. The bulk of the primary analysis, which re-
constructs all events, and catalogues the high-mass pairs and multi-muon
events, should be completed by the end of June and reported at Tbilisi.
For the pairs with masses below ≈ 1 GeV/c, additional analysis using Multi-
wire Proportional Chambers in the beam and upstream of the hadron absorber
to improve resolution, is underway and should be finished by the end of
the summer.

II. PLANNING OF E-444

At present we are engaged in constructing the additional components
of the apparatus needed to handle the higher intensities of E-444, and
should be ready to run by the end of the year. Two new graduate students,
Cathy Newman of Chicago, and Gary Hogan of Princeton, have joined our
group to work on E-444.

The physics issues of E-444 have, if anything, become more exciting
with the measurements of high-mass lepton-pairs by Columbia-FNAL (E-288)
and Princeton-Chicago (300/325) groups, which are interpreted as parton-
antiparton annihilations. In E-444, by comparing the continuum μ pairs
from π⁺, π⁻, and protons to a very high accuracy, one can find definitively
whether fractionally charged partons are annihilating. We can also mea-
sure the parton structure functions of pions from the X and p⊥ distributions
of the continuum events.

For the π⁺/π⁻ comparison, E-444 will reach Fermilab's ultimate
limit of precision. The spectrometer acceptance is as large as feasible
and the beam intensity of 10⁷/sec is the highest at which Cherenkov counters
can resolve π⁺ from protons. Only an RF separated beam could obviate this.

We are very anxious to get started on this experiment, which also
can search for new particles to a ≈ 10⁻³⁷ cm²/event at M ≲ 15 GeV. A
new large hodoscope is being built to be placed downstream of the Chicago
Cyclotron Magnet to suppress low-mass μ pairs to the level needed, and νe
are building a segmented target to increase the yield while maintaining
good mass resolution. A third beam Cherenkov has been built to join
the two we provided for our last run. We are now negotiating our agreement
with the Research Division and the Neutrino Department, and strongly request
to be scheduled for installation soon after the end of the present muon
period. The new targeting system in the muon decay pipe would suffice for
setup and some data-taking with positive beam; the triplet train is required
to provide $10^7 \pi^-$/burst for the negative run.

III. PHYSICS RESULTS OF E-331

A. Production of New Particles

In Table I we summarize our exposure in the mass range above 1 GeV/c,
listing as a figure of merit the expected number of J events obtained under
various running conditions. Features of this data are discussed below.

1. J(3,1)

At 150 GeV, our published results for $p + Be \rightarrow J + X$ and $\pi^+ + Be \rightarrow J + X$
are shown in Fig. 1. One sees a significant difference in the distribution
in Feynman - X between π^+-induced and p-induced J's. The absolute total
cross sections reflect a high production rate from π^+ collisions.

At 225 GeV/c, we have obtained so far (25% of the data on π^+ and p,
most of the π^- data) the raw samples shown in Fig. 2. Comparing π^+ vs
π^- induced J's, one sees very similar X-dependences (see Fig. 3). Comparing
π vs p induced J's we find the p_x-distributions to be identical, the x-distribu-
tion of π-induced events again to be broader. The final π^+ and π^- samples
will each contain more than 400 J events, the proton sample more than 2000.

The actual form of the p_x spectrum of J production has a large influ-
ence on the yield of direct single leptons when the p_x of the lepton becomes
larger than about 3 GeV/c. For the sample of 225 GeV/c p-induced J events
analyzed so far it begins to appear (see Fig. 4) that the parametrization

\[\frac{1}{p_L} \frac{d\sigma}{dp_L} \propto e^{-bp_L^2}, \text{ with } b \sim 0.70 \text{ GeV}^{-2} \]

is superior to the form often used up to now, viz.

\[\frac{1}{p_L} \frac{d\sigma}{dp_L} \propto e^{-c p_L}, \text{ with } c = 1.7 \text{ GeV}^{-1}. \]

The full sample will show conclusively which of these, if either, is the
best description.

2. $\psi(3.7)$

Intriguingly this particle seems to be produced by π^- and π^+ beams,
but is not as yet evident in the proton-induced sample. (See Fig. 2)

3. Vector Meson Production (ρ, ω, ϕ)

To improve resolution, at low masses, we have used MWPC planes up-
stream of the absorber and halfway through it. Only the data from the
June run at 150 GeV/c has been analyzed including information from these
planes. The 225 GeV/c analysis is in progress. A mass spectrum is shown
in Fig. 5. The ϕ is clearly resolved; the peak at 750 MeV/c is narrower
than what would come from $\rho \rightarrow \mu^+\mu^-$ alone, so a comparable ω contribution
must be present. The differential cross-sections for ρ, ω, and ϕ have been
obtained as functions of x and p_L, satisfying the forms

\[\frac{1}{p_L} \frac{d\sigma}{dp_L} \propto A(1 - x)^b e^{-cp_L}, \text{ for example, (Fig. 6).} \]

The total cross-sections obtained are shown
in Table 2. These results are just being submitted for publication. Greatly
improved statistics for ρ, ω, ϕ production have been obtained in the 225
GeV/c run, as well as a sample of π^- induced events. The spectrometer
acceptance is much larger at low x_F at 225 GeV, and more uniform than at 150 GeV.
IV. STUDY OF NON-RESONANT μ-PAIRS

A. $1.8 < M_{\mu\mu} < 2.6 \text{ GeV}$

In the mass range $1.8 \text{ GeV/c} - 2.6 \text{ GeV/c}$, where there are no known resonant sources of μ-pairs, we have accumulated sufficient events to compare the π^+ vs π^- production cross sections to about 10%. Models of parton-antiparton annihilation as the source of these pairs would predict

$$\frac{\sigma(\pi^+ C \rightarrow \mu\mu + X)}{\sigma(\pi^- C \rightarrow \mu\mu + X)} = 1.6$$

in this mass range. The p_L and X distributions of the continuum are also very useful in constraining such models. This measurement will be greatly improved in E-444.

B. $M \lesssim 0.6 \text{ GeV}$

Below the ρ-ω peak of Fig. 5, there is a substantial continuum, which persists down to the threshold of $M = 2 M_{\mu}$. We are still estimating the fraction of these events coming from secondary processes (Bethe Heitler, ρ production in the absorber which is misidentified as originating in the target etc.), to see if there remains significant primary production.

V. CONTRIBUTION OF μ-PAIRS TO THE DIRECT SINGLE LEPTON CROSS-SECTION

Within the kinematical limits of our μ-pair measurements ($0 < p_L \lesssim 4$ GeV/c, $M_{\mu\mu}$ from threshold up to and including the $J(3,1)$) we can obtain the inclusive single lepton cross-section originating from μ-pairs.

A complete survey has been carried out over a wide range of x and p_L of the single muon where we have actually measured the cross-sections of all significant parent μ-pairs. The results are being submitted for publication.
VI. MULTI-MUON EVENTS

So far we have analyzed only the multi-muon events from last June, where the sample was very small. Only one high-mass event was seen, where a J was accompanied by a low p_T muon. With the new sample, we shall be able to say, to a cross section limit of better than 10^{-35} cm2, (.1% of J production) whether interesting 3 or 4 μ events are produced. This analysis will be reported at Tblisi for most of our 225 GeV sample.

REFERENCES

TABLE I

SUMMARY OF DATA ACQUIRED IN E-331

A. ALL DATA (Number of J(3.1) Events Is Used To Indicate Sensitivity)

<table>
<thead>
<tr>
<th>Run</th>
<th>p_{Beam} (GeV/c)</th>
<th>Target</th>
<th>π^+ Induced</th>
<th>π^- Induced</th>
<th>p^- Induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1975</td>
<td>150</td>
<td>Be</td>
<td>63</td>
<td>-</td>
<td>67</td>
</tr>
<tr>
<td>Winter 75-76</td>
<td>225</td>
<td>C</td>
<td>600</td>
<td>350</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>Sn</td>
<td>100</td>
<td>-</td>
<td>300</td>
</tr>
</tbody>
</table>

B. DATA WITH FORWARD CHAMBERS ACTIVE

(For Better Resolution To Study Masses < 1.5 GeV)

The number of $p + \omega$ events is shown for each running condition.

<table>
<thead>
<tr>
<th>Run</th>
<th>p_{Beam} (GeV/c)</th>
<th>Target</th>
<th>p^+ Induced</th>
<th>ω Induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1975</td>
<td>150</td>
<td>Be</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>Winter 75-76</td>
<td>225</td>
<td>C</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6000</td>
</tr>
</tbody>
</table>
TABLE II. INCLUSIVE TOTAL CROSS-SECTION FOR VECTOR MESON PRODUCTION

\[150 \text{ GeV} \ (\pi^-)^+ \text{Be} \rightarrow V + X \quad V = \rho, \omega, \phi, J \rightarrow \mu\mu \]

Measurements:
\[
\begin{cases}
0.15 < x < 1 \\
0 < p_1 < 2 \text{ GeV/}c \quad (\infty)
\end{cases}
\]

Fit to:
\[
\frac{d\sigma}{dx} \sim (1-x)^6, \quad \frac{1}{p_1} \frac{d\sigma}{dp_1} \sim e^{-cp_1}
\]

Integrate from:
\[
\begin{cases}
-1 < x < 1 & \text{For Protons} \\
0 < x < 1 & \text{For } \pi^+
\end{cases}
\]

Assumptions:
\[
\begin{align*}
BR(J \rightarrow \mu\mu) &= 7 \times 10^{-2} \\
BR(\rho \rightarrow \mu\mu) &= 4 \times 10^{-5} \\
BR(\omega \rightarrow \mu\mu) &= 8 \times 10^{-5} \\
BR(\phi \rightarrow \mu\mu) &= 2.4 \times 10^{-4}
\end{align*}
\]

For \(\rho, \omega, \phi \) use \(A^{2/3} \) dependence to scale from Be to p
For \(J \) use \(A' \)

<table>
<thead>
<tr>
<th></th>
<th>(b_\rho)</th>
<th>(C_\rho)</th>
<th>(\sigma_\rho) ((0 < x < 1))</th>
<th>(b_\pi)</th>
<th>(C_\pi)</th>
<th>(\sigma_\pi) ((0 < x < 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>3.5</td>
<td>3.6</td>
<td>5.5 \pm 1 \text{mb}</td>
<td>2.6</td>
<td>3.9</td>
<td>2.5 \pm 5 \text{mb}</td>
</tr>
<tr>
<td>(\omega)</td>
<td>3.5</td>
<td>3.6</td>
<td>5.5 \pm 1 \text{mb}</td>
<td>2.6</td>
<td>3.9</td>
<td>2.5 \pm 5 \text{mb}</td>
</tr>
<tr>
<td>(\phi)</td>
<td>4.6</td>
<td>3.5</td>
<td>0.4 \pm 0.08 \text{mb}</td>
<td>5.8</td>
<td>3.4</td>
<td>0.24 \pm 0.04 \text{mb}</td>
</tr>
<tr>
<td>(J)</td>
<td>3.8</td>
<td>2.1</td>
<td>89 \text{nb}</td>
<td>24</td>
<td>2.6</td>
<td>82 \text{nb}</td>
</tr>
</tbody>
</table>
The spectrometer.

Mass spectra, uncorrected for spectrometer acceptance.

(a) Cross sections for J production by π⁺ and protons. (b) Relative distributions in p_\perp^2 for J production, uncorrected for acceptance. [The acceptance is uniform in p_\perp^2 to within ±10% out to p_\perp^2 of 3 (GeV/c)².]

Absolute cross sections for μ-pair production at 150 GeV/c incident momentum. Upper limits are for 90% confidence. Statistical and systematic errors are included.

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Mass range (GeV/c²)</th>
<th>Range of x_F</th>
<th>$\sigma(p^+Be\rightarrow\mu^+\mu^-+X)$ (nb/nucleus)</th>
<th>$\sigma(p^+Be\rightarrow\mu^+\mu^-+X)$ (nb/nucleon)</th>
<th>$\sigma(\pi^+Be\rightarrow\mu^+\mu^-+X)$ (nb/nucleus)</th>
<th>$\sigma(\pi^+Be\rightarrow\mu^+\mu^-+X)$ (nb/nucleon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+--</td>
<td>2.0-2.6</td>
<td>0.05-1.0</td>
<td>2.4 ± 0.9</td>
<td>0.27 ± 0.10</td>
<td>11 ± 4</td>
<td>1.3 ± 0.5</td>
</tr>
<tr>
<td>+-- (D)</td>
<td>2.6-3.5</td>
<td>0.05-1.0</td>
<td>17 ± 4</td>
<td>1.9 ± 0.4</td>
<td>29 ± 6</td>
<td>3.2 ± 0.7</td>
</tr>
<tr>
<td>++</td>
<td>3.5-4.1</td>
<td>0.20-1.0</td>
<td>1.0 ± 0.6</td>
<td>0.11 ± 0.07</td>
<td><4.0</td>
<td><0.44</td>
</tr>
<tr>
<td>+--</td>
<td>2.0-4.1</td>
<td>0.20-1.0</td>
<td><1.3</td>
<td><0.15</td>
<td><2.4</td>
<td><0.27</td>
</tr>
<tr>
<td>++</td>
<td>2.0-4.1</td>
<td>0.20-1.0</td>
<td><0.75</td>
<td><0.08</td>
<td><2.4</td>
<td><0.27</td>
</tr>
<tr>
<td>++, +--</td>
<td>3.1-10</td>
<td>0.4-0.6</td>
<td><0.84</td>
<td><0.09</td>
<td><2.8</td>
<td><0.31</td>
</tr>
</tbody>
</table>

FIGURE 1. FIRST RESULTS, JUNE '75 TEST RUN
$\pi^+ + C \rightarrow \mu\mu + X$

$\pi^- + C \rightarrow \mu\mu$

$p + C \rightarrow \mu\mu + X$

$(\pi^+ + \pi^-) + C \rightarrow \mu\mu$

FIGURE 2

$M_{\mu\mu}$ (GeV)
225 GeV/c
p + C → J + X

\[\frac{d^2\sigma}{dP_T^2} \] (ARBITRARY UNITS)

\[e^{-1.7P_T^2} \]
\[e^{-0.7P_T^2} \]

\[P_T^2 \text{(GeV/c)}^2 \]

FIGURE 4
$P + Be \rightarrow \mu^+ \mu^- \rightarrow X$

$X > 0.15$
\[\rho - \omega (1-x)^{3.5} \]

\[\phi (1-x)^{4.6} \]

\[P + Be \rightarrow \mu^+ \mu^- + X \]

150 GeV/c

FIGURE 6a
\begin{align*}
\rho &- \omega \\
\frac{1}{p_L} \frac{d\sigma}{dp_L} &\sim e^{-3.6 p_L} \\
\phi & \\
\frac{1}{p_L} \frac{d\sigma}{dp_L} &\sim e^{-3.5 p_L} \\
\text{P} + \text{Be} &\rightarrow \mu^+ \mu^- + \text{X}
\end{align*}