Stresses & Deformations in Vessel Containing Copper Magnet & Shielding

Bob Weggel 5/27-31/2011

Model: Vessel (bore tube, flanges & cylindrical shell) are of steel; specific gravity $\gamma = 7.85$; $E = 200$ GPa.

Shielding, of $\gamma = 9.88$ (60% WC of $\gamma = 15.8 + 40\%$ H$_2$O), exerts pressure proportional to depth.

Overall dimensions: outer radius $r_2 = 1.15$ m; upstream end $z_1 = -2.35$ m; downstream end $z_2 = 3.00$ m.

Thickness of: 1) Flange: $t_f = 0.05$ m; 2) Bore tube: 0.04 m; 3) Outer cylindrical shell: 0.03 m.

I.R. of bore tube = 0.08 m for $-2.35 < z < 0$, flaring elliptically thereafter as in blue curve of Fig 1.

To reduce number of mesh elements, model effect of bore tube by its axial force on flanges.

Inner Radius of Bore Tube that Flares Elliptically with Axial Distance

Fig. 1: Inner radius of bore tube that flares elliptically from $r = 0.08$ m at $z = 0$ to $r = 0.30$ m at 3 m (gray curve), 4 m (green), 5 m (turquoise), 6 m (blue), 7.5 m (magenta); 10 m (red) or 15 m (black).
Fig. 2: Isometric view of vessel, with cylindrical shell, flanges, and bore tube of constant inner radius of 0.08 m from \(z = -2.35 \) m to 0, flaring elliptically thereafter to 0.262 m at \(z = 2.95 \) m.

Fig. 3a-c: Von Mises stress \(\sigma_{VM} \) and deformation \(\delta \) (magnified 400 times) with weight supported by line contact of flanges with ground (boundary condition \(\delta_y = 0 \) along line segments \([x=0, y=-r_2, (z_1-t_f) < z < z_1 \) & \(z_2 < z < (z_2+t_f)] \)). Bore-tube axial force \(\equiv 120 \) kN; maximum axial stress \(\sigma_z \approx 4.8 \) MPa; maximum axial strain \(\varepsilon_z \approx 2.4 \times 10^{-5} \); bore-tube elongation \(\Delta z < 0.12 \) mm. Left: Maximum localized \(\sigma_{VM} \approx 450 \) MPa; typical \(\sigma_{VM} \approx 10-20 \) MPa. Center: Isometric view of deformation; maximum \(\delta \approx 0.66 \) mm. Right: View from x axis, with y rightwards and z upwards.