

The Neutrino Factory and Muon Collider Collaboration

The R&D Program for a 4 MW Target Station for a Neutrino Factory and Muon Collider Source

(BNL E951)

K.T. McDonald

Princeton U.

Muon Collaboration Technical Board, Feb. 9, 2002

http://puhep1.princeton.edu/mumu/target/

FEBRUARY 9, 2002

Overview

- Why do targetry R&D?
- What have we done so far?
- What more should we do?

Technical Presentations

Harold Kirk: Overview of Beam Studies.

Thomas Roser: AGS Intensity Upgrades.

Roman Samulyak: Simulations of MHD and beam effects.

Robert Weggel: Pulsed Magnet Design Issues.

Peter Titus: Magnet Engineering.

Michael Iarocci: Cryogenic Issues.

Ioannis Marneris: Power Supply Issues.

Harold Kirk: Overview of the Pulsed Magnet Project. KTM: Summary.

Why Do Targetry R&D?

- More π 's, μ 's and ν 's are needed to expand the frontiers of high energy physics.
- Proton drivers are foreseen with beam power up to 4 MW,
 > 10 times that of present HEP drivers.
- It appears most cost effective to maximize yield at the source (confirmed by Neutrino Factory Feasibility Studies 1 and 2).
- At 4-MW beam power, targets must survive intense heating, intense mechanical shock, and severe radiation damage.
- A disposable (moving) target suggests itself.
- For beam energy above ≈ 6 GeV, yield is enhanced for a high-Z target, \Rightarrow Liquid metal target: mercury, Pb-Bi, ...
- Secondary particle yield peaks at low momentum,
 ⇒ Capture in tapered high-field solenoid magnet.
- Although "feasible", these target concepts are beyond the state of the art.

KIRK T. MCDONALD

What Priority Should Targetry R&D Have?

- High-power targetry will be the first topic of R&D efforts of the Muon Collaboration to be implemented in any scenario aimed at physics results: superbeam, neutrino factory, muon collider, ...
- Hence, targetry R&D should be completed in advance of that on other topics.
- Whether or not this implies "top" priority, targetry R&D should continue in a timely fashion.

When Has the Muon Collaboration Done Enough Targetry R&D?

- If high-power targets are established to be so feasible that they can be adopted as the baseline option in a CDR for a future accelerator (with further targetry R&D being low-risk, production prototyping).
- If the Muon Collaboration decides that targetry R&D is outside its mission (because, like proton drivers, it is so relevant to non-muon applications) – but then targetry R&D should be continued under other auspices.
- If high-power targets prove to be unfeasible.

The Neutrino Factory and Muon Collider Collaboration

Example 1: The SNS Target

• The SNS CDR baseline target is flowing mercury in a stainless-steel jacket.

- No R&D was done on this concept prior to project approval.
- Beam-induced cavitation in the stainless-steel entrance window was recently confirmed as a serious problem.
- The baseline target design is probably untenable. [Similar problems observed years ago at ISOLDE.]

KIRK T. MCDONALD

February 9, 2002

Example 2: The CERN SPL Neutrino Horn

• A proposed SPL neutrino horn surrounds a mercury jet target that intercepts a 4-MW, 2-GeV proton beam at 50 Hz.

- R&D at CERN on electromechanical effects of pulsing this horn ends as of ≈ today.
- The extremely serious issue of radiation damage degradation of the horn integrity has yet to be studied.
- Without further R&D, use of this design in a production facility would be very risky.

Summary of Targetry Activities Through FY01

- Liquid metal targets in vessels show beam-induced cavitation damage to entrance window (ISOLDE, 1995, LANL, 2001).
- Beam tests of large passive mercury target for SNS (BNL 1998, LANL 2000) suggest velocity of sound may be reduced temporarily by beam-induced microcavitation).
- MARS simulations of beam-target interactions ⇒ advantage of high-Z target, of high-field capture solenoid, of tilted beam and target, and disadvantages of high radiation dose (Mokhov).
- Analytic simulations of beam-induced pressure waves in target (Sievers), and of MHD effects of mercury jet entering magnet (KTM, Palmer, Weggel) indicate "feasibility", but need for R&D.
- Numerical simulations (Hassanein, Samulyak) tend to confirm these analytic estimates.

- Beam tests of high-strength solid targets show good agreement between strain-sensor data and ANSYS simulation, and suggest that they can survive single-pulse stresses up to Study-2 design intensity, = 16 TP / 8 mm² (BNL, March '01).
- Calculation and experiment indicate that a carbon target could survive against sublimation in a He atmosphere in a 4 MW beam (Thieberger, ORNL).
- Beam tests of active and passive mercury targets indicate dispersal velocities of manageable size, proportional to proton pulse energy (BNL, April '01; ISOLDE, Aug. '01).
- Tests of mercury jets entering a high-field solenoid not yet definitive (CERN, Grenoble, 2001).

Issues for Further Targetry R&D

- Continue numerical simulations of MHD + beam-induced effects [Samulyak].
- Continue tests of mercury jet entering magnet [CERN, Grenoble].
- For solid targets, study radiation damage and issues of heat removal from solid metal targets (bands, chains, *etc.*).
- Confirm manageable mercury-jet dispersal in beams up to full Study-2 intensity – for which single-pulse vaporization may also occur. Test Pb-Bi alloy jet.
- Study issues when combine intense proton beam with mercury jet inside a high-field magnet.
 - 1. MHD effects in prototype target configuration.
 - 2. Magnetic damping of mercury-jet dispersal.
 - 3. Beam-induced damage to jet nozzle in the magnetic field.

Further Beam Studies without High-Field Magnet

- Studies of production of mercury jets up to 20 m/s. Jet quality is the issue.
- Construction of new liquid metal jet targets with continuous flow: mercury and Wood's metal.
- Upgrade AGS to 8/16 TP single pulses [Roser].
 - 1. Improve control of fast extraction with bipolar power supply for a key vertical sextupole.
 - Improve control of chromaticity of bunches during transition with heftier power supply for main ring horizontal sextupoles.
 - 3. Explore schemes for 2:1 bunch merging at 24 GeV via rf manipulation.
- Test the continuous-flow targets in beam once at least 8 TP per pulse are available.
- [Radiation damage studies of solid targets at BNL booster.] KIRK T. MCDONALD FEBRUARY 9, 2002

11

Further Beam Studies with a High-Field Magnet

- Study jet dispersal, and possible damage to nozzle, as a function of beam intensity, magnetic field strength, and nozzle position.
- Online diagnostics will primarily be optical (+ possible use of fiberoptic strain sensors).

CERN/Grenoble optical system that fits in 20-cm magnet bore:

• To be affordable, construct a 15-T pulsed solenoid magnet.

What Magnetic Field Strength is Appropriate?

• Our muon collider and neutrino factory designs have long called for a 20-T capture solenoid.

A 20-T magnet must be a hybrid: 6-T copper "insert" + 14-T superconducting "outsert".

The small gain in performance from 14 to 20 T may not warrant the cost and complexity of the hybrid magnet.

A capture solenoid for a superbeam needs a larger bore to trap higher P_{\perp} pions, for which 14 T is then sufficient.

 \Rightarrow Our physics goals are well satisfied by a 14-T capture solenoid.

Should the Pulsed R&D Magnet have Lower Field?

- Most magnetic-field effects on the mercury jet scale as the magnetic pressure $B^2/8\pi$ (for a fixed geometry).
- Thus, a study using a 5-T magnet would require a factor of 8 extrapolation to the desired performance at 14 T.
- Present cost estimates indicate that we can build a 14-T pulsed magnet for about twice the cost of a 5-T pulsed magnet.
- → We propose to construct a 14.5-T pulsed magnet, that can be staged as a 5-T and 10-T magnet.

factor Muon Collaboration

The Neutrino Factory and Muon Collider Collaboration

A 14.5-T Pulsed Magnet with 5- and 10-T Phased

Options

Phase	No. of PS	Coolant	Temp.	Field
1	1	N_2	84 K	5 T
2	4	N_2	74 K	10 T
3	4	H_2	30 K	14.5 T

Keeping Costs Low

- Simple solenoid geometry with rectangular coil cross section and smooth bore (of 20 cm diameter) [Weggel, Titus].
- Power supply built out of 4 existing 540 kVA supplies that can be fed by a single, existing substation [Marneris].
- Cryogenic system reduces coil resistance to give high field at relatively low current [Iarocci].
 - Circulating coolant is gaseous He to minimize activation, and to avoid need to purge coolant before pulsing magnet.
 - Heat exchanger recycled from the SSC.
 - Phase 1 & 2 cooling via N_2 boiloff; Phase 3 via H_2 .

Pulsed Magnet System Layout at the AGS

- Locate the 4 x 540 kVA power supplies on the east side of the A3 cave, feed power in via the trench.
- If satisfactory to Safety Committee, locate the heat exchanger and LH₂ dewar in a concrete enclosure that extends the present A3 beam stop.

Budget Request for Continued Beam Studies

FY02:

1/2 of cost of bipolar power supply for vertical sextupole ...\$50k
1/4 of cost of power supply for horizontal sextupoles\$50k
3 shifts of dedicated beam studies: rf bunch merging\$75k
Technician support for jet targets (BNL)\$50k
Fabrication of new jet targets (Princeton)\$75k
Total FY02\$300k

FY03:

20 shifts of parasitic beam studies	\$100k
Technician support for beam studies (BNL)	\$50k
Princeton effort on beam studies	. \$50k
Total FY03	. \$200

Budget Request for Pulsed Magnet System

FY02:

Total FY02	\$525k
BNL power supply	\$125k
BNL cryo system design study	\$100k
MIT magnet design study	\$100k
BNL magnet engineering	\$200k

FY03:

Coil + cryostat fabrication (industry)	\$400k
BNL power supply (1 x 540 kVA)	\$225k
BNL cryo system (to LN_2 operation)	\$225k
Total FY03	\$850k

FY04:

Magnet commissioning	\$50k
BNL power supply (to 4 x 540 kVA) \dots	\$75k
BNL cryo system (to LH_2 operation)	\$200k
Total FY04	\$325k

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Targetry Budget Request by Fiscal Year

FY02:	
Beam studies	\$300k
Pulsed magnet system	\$525k
BNL simulations	\$75k
Total FY02	\$900k
FY03:	
Beam studies	\$200k
Pulsed magnet system	\$850k
BNL simulations	\$50k
Total FY03	\$1100k
FY04:	
Beam studies	\$300k
Pulsed magnet system	\$325k
BNL simulations	\$50k
Total FY04	\$675k

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

3-Year and 4-Year Project Scenarios

Phase 1 = end FY03, 2 = mid FY04, 3 = end FY04.

Item	FY02	FY03	FY04	Total
Coil	\$100k	\$400k	\$50k	\$550k
Cryo	\$100k	\$225k	\$200k	\$525k
P.S.	\$125k	\$225k	\$75k	\$425k
Total	\$325k	\$850k	\$325k	\$1500k

Phase 1 = mid FY04, skip 2, 3 = end FY05.

Item	FY02	FY03	FY04	FY05	Total
Coil	\$100k	\$225k	\$50k	\$225k	\$600k
Cryo	\$100k	\$100k	\$225k	\$100k	\$525k
P.S.	\$125k	\$100k	\$125k	\$75k	\$425k
Total	\$325k	\$425k	\$375k	\$400k	\$1550k

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Scenarios that Stop at the End of Phase 1, 2, or 3

Item	Phase 1	Phase 2	Phase 3
Field	5 T	10 T	14.5 T
Coil	\$400k	\$400k	\$550k
Cryo	\$100k	\$325k	\$525k
P.S.	\$300k	\$425k	\$425k
Total	\$800k	\$1150k	\$1500k

Radical Rebudgeting of BNL/Princeton R&D

- Complete E951 phase 1 with beam studies to 16 TP.
- Complete pulsed magnet project design study.
- Expand targetry and cooling simulations.

FY02:

1/2 of cost of bipolar power supply for vertical sextupole	\$50k
1/4 of cost of power supply for horizontal sextupoles	\$50k
3 shifts of dedicated beam studies: rf bunch merging	75k
Technician support for jet targets (BNL)	75k
Fabrication of new jet targets (Princeton)	75k
BNL magnet engineering\$	3200k
MIT magnet design study\$	3100k
BNL cryo system design study	\$50k
BNL power supply	\$50k
BNL targetry and cooling simulations\$	3175k
Total FY02 \$9	900k

FY03:

Beam studies	\$100k
Technician support for beam stu	dies (BNL) $\dots \dots \dots$
Princeton effort on beam studies	s \$50k
BNL targetry and cooling simul	ations \$200k
Total FY03	\$400k
Kirk T. McDonald	FEBRUARY 9, 2002 23