Targetry and Capture Issues at a Neutrino-Factory/Muon-Collider Source

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

November 17, 1999

ACCAPP’99, Long Beach, CA

http://puhep1.princeton.edu/mumu/target/
Muon Requirements

• $\approx 10^{14} \mu^\pm/s$ for either a muon collider or a neutrino factory.

• The muons come from the decay of soft pions produced in p-nucleus collisions.

• **Our strategy is to maximize the ratio of captured muons per proton.**

 i.e., to minimize the proton requirements.

• Goal: $0.1\mu/p$ delivered for physics use.

The Source

• The muons come from the decay of soft pions produced in p-nucleus collisions.

• Need at least $1.5 \times 10^{15} \ p/s$ at 16-24 GeV

 \Leftrightarrow 4 MW beam power.

• Initial muon emittance is about 10^6 larger than desired

 \Rightarrow Need fast cooling.

• [Our muon beam is 10^6 times hotter than existing beams.]
The Muon Source

- Pion production peaks at $P_{\parallel} \approx 350 \text{ MeV}/c$; $P_{\perp} \lesssim 200 \text{ MeV}/c$.

- Capture the soft pions in a solenoid magnet channel.

- Capture efficiency improved with a stronger (20 T) field on the target than in the main channel (1.25 T). [Adiabatic invariance reduces the pion P_{\perp} when going from high to low B.]

- High-Z target without nearby cooling structure that would absorb pions.

- Liquid mercury jet target.

- Soft pions have $v/c < 1$, ⇒ Disperse while drifting
 ⇒ Begin RF manipulation as soon as possible to form a bunch with reduced energy spread (Phase Rotation).
Overview of Targetry and Capture

- $1.2 \times 10^{14} \mu^+/s$ via π-decay from a 4-MW proton beam.
- Proton pulse ≈ 1 ns rms.
- Mercury jet target.
- 20-T capture solenoid followed by a 1.25-T π-decay channel with phase-rotation via rf (to compress energy of the muon bunch).
Targetry and Capture Issues

• Is a liquid jet target viable?

 – 1-ns beam pulse \Rightarrow shock heating of target.
 – Resulting pressure wave may disperse liquid (or crack solid).
 – Damage to target chamber walls?
 – Magnetic field will damp effects of pressure wave.
 – Eddy currents arise as metal jet enters the capture magnet.
 – Jet is retarded and distorted, possibly dispersed.
 – Hg jet studied at CERN, but not in beam or magnetic field:

 ![High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests)
 4,000 frames per second, Jet speed: 20 ms$^{-1}$, diameter: 3 mm, Reynold's Number:$>$100,000
 A. Poncet](image-url)
• Is the first rf cavity viable?

 – High-gradient (5 MeV/m), low-frequency (≈ 70 MHz) rf cavity only 3 m downstream of target.

 – $> 10^{14}$ particles traverse the cavity each proton pulse; many hit the cavity wall.

 – Cavities tested against breakdown from beam-induced showers only up to $\approx 10^{12}$ particles/pulse.

• Is the 20-T Solenoid viable?

 – Even with water-cooled tungsten inserts, this hybrid (copper/superconductor) magnet will experience a very high radiation dose.

 – LANL, MSU have experience with superconducting magnets in high radiation areas.

• Other Radiological Issues

 – A 4-MW beam leads to activation issues characteristic of neutron spallation sources.

 – Remote handling of activated liquid target material is under study at CERN ISOLDE, the ORNL NSNS, ...
R&D Goals

Long Term: Provide a facility to test key components of the front-end of a neutrino factory/muon collider in realistic beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields. (Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to AGS beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target; Characterize pion yield.
An R&D Program for Targetry and Capture
at a Muon Collider Source

A Proposal to the BNL AGS Division

Audrey Bernadon, David Brashears, Kevin Brown, Daniel Carminati,
Michael Cates, John Corlett, F Debray, Adrian Fabich, Richard C. Fernow,
Charles Finfrock, Yasuo Fukui, Tony A. Gabriel, Juan C. Gallardo,
Michael A. Green, George A. Greene, John R. Haines, Jerry Hastings,
Ahmed Hassanein, Michael Iarocci, Colin Johnson, Stephen A. Kahn,
Bruce J. King, Harold G. Kirk, Jacques Lettry, Vincent LoDestro,
Changguo Lu, Kirk T. McDonald, Nikolai V. Mokhov,
Alfred Moretti, James H. Norem, Robert B. Palmer, Ralf Prigl, Helge Ravn,
Bernard Riemer, James Rose, Thomas Roser, Roman Samulyak,
Joseph Scaduto, Peter Sievers, Nicholas Simos, Philip Spampinato,
Iuliu Stumer, Peter Thieberger, James Tsai, Thomas Tsang, Haipeng Wang,
Robert Weggel, Albert F. Zeller, Yongxiang Zhao

aArgonne National Laboratory, Argonne, IL 60439
bBrookhaven National Laboratory, Upton, NY 11973
cUniversity of California, Los Angeles, CA 90095
dCERN, 1211 Geneva, Switzerland
eFermi National Laboratory, Batavia, IL 60510
fGrenoble High Magnetic Field Laboratory, 38042 Grenoble, France
gLawrence Berkeley National Laboratory, Berkeley, CA 94720
hMichigan State University, East Lansing, MI 48824
iOak Ridge National Laboratory, Oak Ridge, TN 37831
jPrinceton University, Princeton, NJ 08544

(Submitted Sept. 28, 1998; approved as BNL E951 Oct. 1, 1999)

1Project Manager. Email: hkirk@bnl.gov
2Spokesperson. Email: kirkmcd@princeton.edu
The 8 Steps in the R&D Program

1. Simple tests of liquid (Ga-Sn, Hg) and solid (Ni) targets with AGS Fast Extracted Beam (FEB).

2. Test of liquid jet entering a 20-T magnet (20-MW cw Bitter magnet at the National High Magnetic Field Laboratory).

3. Test of liquid jet with 10^{14} ppp via full turn FEB (without magnet).

4. Add 20-T pulsed magnet (4-MW peak) to liquid jet test with AGS FEB.

5. Add 70-MHz rf cavity downstream of target in FEB.

6. Surround rf cavity with 1.25-T magnet. At this step we have all essential features of the source.

7. Characterize pion yield from target + magnet system with slow extracted beam (SEB).

8. Ongoing simulation of the thermal hydraulics of the liquid-metal target system.
Step 1: Initial Tests with FEB

- Site presently under consideration: A3 line.

- First test: liquid metal in a trough, a pipe and in free flow.
- Instrumentation: high-speed camera, fiberoptic strain sensors (Duncan Earl, ORNL).
Step 2: Pulsed Liquid Jet

- Inspiration:

- Hg jet under construction at CERN (Colin Johnson, Helge Ravn), and at Princeton.
Step 3: Full Turn Extraction

- G10 kicker can deliver beam to A-C lines as well as to U line.
- Present power supply sufficient to kick out only 1 bunch.
- Upgrade to kick out all 6 bunches requires ≈ 18 months.
- Initiate design work in FY00 to complete upgrade in FY01.
Step 4: Pulsed 20-T Magnet

- The copper magnet will be cooled by LN$_2$, and can be pulsed once every 10 minutes. Pulse duration ≈ 1 s.

- Engineers: Bob Weggel, Bill Sands, designer: Bob Duffin.

- 4 MW (peak) power to be bussed from the MPS power supply house to the A3 line (Andy Soukas).

- 100 liters of LN$_2$ boiled off each pulse; vent outside of cave.

- A DC magnet is required as a transition between the pulsed magnet and the DC superconducting magnet around the rf cavity. This will require ≈ 1 MW average power.
Step 5: 70-MHz RF Cavity

- Cavity has 60-cm-diameter iris, 2-m outer diameter.
 (Jim Rose, BNL, Werner Pirkl, CERN)

- 4-6 MW peak power to be supplied by four 8973 tubes recommissioned from the LBL Hilac.
 (Vince LoDestro, BNL; Don Howard, LBL)

- We are also embarking on an R&D program with industry to develop a 50-MW peak power, 70-MHz power supply
 (EEV, Eimac, Litton, Thomson).
Step 6: 1.25-T Solenoid Around RF Cavity

- Present plan: use PEP-4 TPC superconducting solenoid (Mike Green, LBL).
Step 7: Characterization of Pion Yield

- The final measure of system performance is the capture of soft pions that later decay to muons.
- Add bent solenoid spectrometer downstream of TPC magnet.
- Instrument with low-pressure TPC’s and aerogel Čerenkov counters.
- Collect data with slow beam, $< 10^6$ ppp.
- Compare with extrapolations from data of E-910.
Step 8: Simulation of Beam-Jet-Magnet

- ANSYS simulation (Changguo Lu, Princeton):

![Simulation Diagram](image)

- HEIGHTS simulation (Ahmed Hassanein, ANL):

Mercury Jet with 4 mm Beam and B-field Diffused in
Schedule of Targetry & Capture R&D

• FY99:
 Begin preparations of BNL A3 area; begin work on liquid jets.

• FY00:
 Initial beam tests in A3 line. Liquid jet test at NHMFL.
 (600 hours of AGS beamtime);
 Begin work on extraction upgrade, magnet systems,
 and rf systems.

• FY01:
 Complete extraction upgrade; test of liquid jet + beam.
 (600 hours).

• FY02:
 Complete magnet and rf systems; test with 2 ns beam.
 (600 hours).

• FY03:
 Complete pion detectors; test with low intensity SEB.
 (600 hours).