The MERIT experiment is a proof-of-principle test of a target system for a high power proton beam to be used as front-end for a neutrino factory or a muon collider. The experiment took place in autumn 2007 with the fast-extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of 30×10^{12} protons per pulse. We report results from the portion of the MERIT experiment in which separated beam pulses were delivered to a free mercury jet target with time intervals between pulses varying from 2 to 700 μs. The analysis is based on the responses of particle detectors placed along side and downstream of the target.

INTRODUCTION

The MERIT experiment represents an important milestone in the R&D program of high-power targetry for a future neutrino factory or muon collider. It combines for the first time a free mercury jet and a focusing/capturing solenoid for secondary pions or muons as proposed in design studies for future facilities.

THE TARGET

Hg-jet parameters
- 1 cm diameter, velocity up to 20 m/s
- Proton beam \rightarrow solenoid axis 67 mrad
- Proton beam \rightarrow mercury jet \sim50 mrad
- Interaction region \sim30 cm

Optical diagnostics
- Observe the mercury-jet / beam interaction using high-speed cameras
- Four locations along the jet inside the magnet bore

THE PUMP-PROBE RESULTS

The observed values are consistent with no reduction in particle production for bunches 40 or 350 μs after a first set of bunches, and about 5% reduction for bunches delayed by 700 μs. This indicates that a mercury jet target, although disrupted by intense proton bunches, would remain fully effective in producing pions during a bunch train up of 300 μs as may be desirable for operation of a 4-MW proton driver at a Neutrino Factory.