Muon Collider Progress

R. B. Palmer (BNL)

5/5/09

Vancouver

• Driver
• Target & capture
• Acceleration
• Collider ring ***
• Matching between 50T solenoid cooling ***
• rf breakdown problem for 6D cooling
 – ALD or other surface preparation
 – Magnetic insulation ***
 – High pressure gas ***
 – Cold cavities ***

• Conclusion

*** New results since last year
Why a Muon Collider?

- Point like interactions as in linear e^+e^-
- Negligible synchrotron radiation:
 - Acceleration in rings
 - Small footprint
 - Less rf
 - Hopefully cheaper
- Collider is a Ring
 - ≈ 1000 crossings per bunch
 - Larger spot
 - Easier tolerances
 - 2 Detectors
- Negligible Beamstrahlung
- Narrow energy spread
- 40,000 greater S channel Higgs
 - Enabling study of widths

![Diagram of colliders]

LHC $p\bar{p}$ (1.5 TeV)

ILC e^+e^- (.5 TeV)

CLIC e^+e^- (3 TeV)

Mu-Mu (4 TeV)
Schematic

\[\mathcal{L} = n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^2}{4\pi \sigma_{\perp}^2} \]

\[\Delta \nu \propto \frac{N_{\mu}}{\epsilon_{\perp}} \]

\[\mathcal{L} \propto B_{\text{ring}} P_{\text{beam}} \Delta \nu \frac{1}{\beta^*} \]
Collider Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1.5</th>
<th>4</th>
<th>TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C of m Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>4</td>
<td>1</td>
<td>10^{34} cm2sec$^{-1}$</td>
</tr>
<tr>
<td>Muons/bunch</td>
<td>2</td>
<td>2</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Ring circumference</td>
<td>3</td>
<td>8.1</td>
<td>km</td>
</tr>
<tr>
<td>Beta at IP = σ_z</td>
<td>10</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>rms momentum spread</td>
<td>0.1</td>
<td>0.12</td>
<td>%</td>
</tr>
<tr>
<td>Required depth for ν rad</td>
<td>13</td>
<td>135</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>12</th>
<th>6</th>
<th>Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Driver power</td>
<td>\approx 4</td>
<td>\approx 1.8</td>
<td>MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>25</th>
<th>72,000</th>
<th>pi mm mrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Trans Emittance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Long Emittance</td>
<td>72,000</td>
<td>72,000</td>
<td></td>
</tr>
</tbody>
</table>

- Emittance and bunch intensity requirement same for both examples
- Luminosities are comparable to CLIC’s
- Depth for ν radiation keeps off-site dose < 1 mrem/year

Radiation $\propto \frac{L \beta_\perp}{\Delta \nu < B >} \frac{\gamma^2}{D}$
Proton driver

- Project X (8 GeV H$^-$ linac),
 - Accumulation in the Re-cycler
 - Acceleration to 56 GeV in the Main Injector
 - Stack and re-bunch in new ring
 - $1.7 \times 7 = 12 \text{ Hz} \times 40 \text{ Tp} = 4 \text{ MW}$

- Alternatives
 - Doing it all at 8 GeV
 - Sequence of synchrotrons

Target & Capture

- Mercury Jet Target
- 20 T capture
- Adiabatic taper to 2 T
- MERIT Experiment at CERN H. Kirk (BNL) & K. McDonald
 - No problems seen up to 30 Tp
 - (cf 40 Tp for 56 GeV ≈ 300 Tp for 8 GeV)
MERIT Experiment at CERN

- 15 T pulsed magnet
- 1 cm rad mercury jet
- Up to 30 Tp at 24 GeV
- Magnet field lowers splash velocities

Extrapolation to Collider parameters looks ok
No current proton source intense enough to test
Phase Rotation

• Neuffer method:
 – Bunch first
 – then Rotate

• New optimization generates
 12 vs. 21 bunches
 makes merging easier

• Simulations assume
 rf in magnetic fields

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift (m)</td>
<td>57</td>
</tr>
<tr>
<td>Bunch (m)</td>
<td>31</td>
</tr>
<tr>
<td>Rotate (m)</td>
<td>36</td>
</tr>
<tr>
<td>rf grad (MV/m)</td>
<td>15</td>
</tr>
</tbody>
</table>
Acceleration

- Sufficiently rapid acceleration is straightforward in Linacs and Recirculating linear accelerators (RLAs)
 Using ILC-like 1.3 GHz rf

- Lower cost solution would use Pulsed Synchrotrons
 - Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)
 - SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)
 - SC & pulsed magnet synchrotron 900-2000 GeV (in new tunnel)
Collider Rings

• 1.5 TeV (c of m) Design by Alexahin & Gianfelice-Wendt
 – Now meets β^* and acceptance requirements ***
 – But early dipole may deflect unacceptable background into detector

• 4 TeV (c of m) 1996 design by Oide
 – Meets requirements in ideal simulation
 – But is too sensitive to errors to be realistic
Muon Cooling

- All parts simulated as some level

- Liquid H₂ in 50 T Solenoids
- 6-D cooling
- Merge to single bunches
- Phase Rotate to 12 bunches
- Initial transverse cooling prior to charge separation

- Final

Long Emittance (mm rad)

Trans Emittance (mm rad)
Final Cooling in 50 T Solenoids

Liquid Hydrogen 50 T Solenoids

Re-acceleration & Matching

ICOOL simulate all stages, minus matching and re-acceleration

Stage

long (mm rad)

trans (mm mrad)

Energy (MeV)
Simulation, including matching, of last two solenoids

50 T HTS Solenoids

Liquid hydrogen

Transport solenoids

Induction Acc

- Little loss in matching
- Transmission 85%

\[E = 24.6 - 8.6 \ (MeV), \]
\[\epsilon_\perp = 43.3 - 24.0 \ (\mu \text{m}), \]
\[\epsilon_\parallel = 16.8 - 71.5 \ (\text{mm}) \]
6D cooling in Guggenheim Lattices

Lattice without bending

Bending added
to generate dispersion for 6D-cooling
Guggenheim geometry

Parameters

<table>
<thead>
<tr>
<th>Stage</th>
<th>freq (MHz)</th>
<th>Grad MV/m</th>
<th>Mag (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>201</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Mid</td>
<td>402</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Final</td>
<td>805</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>
Experimental results on breakdown in fields

Some problems in this data
Conclusions are preliminary
Lines to guide the eye

Possible solutions
1. ALD, other surface treatment
2. Cold Beryllium, or Al cavities
3. Magnetic Insulation
4. High pressure gas

Theory
(Palmer Fernow
Gallardo Li Stratakis)
1) ALD or other surface treatment

- Substantial improvement in super-conducting cavity
- Will it improve magnetic field damage?
2) Cold Beryllium or Aluminum Cavities

- SLAC observes copper surface damage with cyclical heating of only 45 degrees
- Focused field emission currents should damage with similar temperatures
- Breakdown will follow if the damage is on a high gradient surface
- Strains depend on magnetic field, material properties, and initial temperature

For fixed rf gradient

\[
S \propto \int_{t=0}^{\tau} \frac{\alpha(T) \frac{dE}{dx}}{B^2 \rho \frac{K(T)}{C_p(T)}} \sqrt{\frac{\tau}{\rho C_p(T)}} dt
\]
Relative B for same strain

Mag field factor vs Operating temperature (K)

- Cold beryllium gives reduction $B_{damage} \approx 22$ (certainly sufficient)
- Warm beryllium gives reduction $B_{damage} \approx 7$ (probably sufficient)
- Cold aluminum gives reduction $B_{damage} \approx 3$ (possibly sufficient)

WARNING: Several assumptions in this calculation
But test of cooled copper cavity will check the hypothesis
Beryllium Cavity using sheet material

Beryllium can also be deposited on other materials - used at ITR
3) Magnetic Insulation Concept

- If magnetic field lines are parallel to an emitting surface
- All field emitted electrons will return to the surface with low energies and do no damage

A first experiment (Under construction at FNAL)

Simulation

Experiment in 4 T solenoid
Example of Mag. Insulated Accelerating Cavity

With extra coils, solutions possible without field flip
- Surface fields now \(\approx 2 \) times acceleration
- Shunt impedance worse
- Higher content of Fourier content in B vs z
- \(\rightarrow \) Greater losses
4) High pressure gas filled rf (Mucool & Muons Inc)

- High pressure hydrogen gas suppresses breakdown
- And can be used as primary absorber
- Lattices must have low β_{\perp} everywhere
- Emittance exchange using LiH wedges
- Or systems with longer paths for higher momenta (e.g. HCC)

![Graph showing gradient vs. pressure with fields at 0 T and 3 T, and a peak at ~66 Atm (or 16 atm at 70 K) at a pressure of 2000 psia.](image)
Helical Cooling Channel (HCC)
(MCTF, & Muons Inc)

- Muons move in helical paths in high pressure hydrogen gas
- Higher momentum tracks have longer trajectories giving momentum cooling (emittance exchange)

- Required Fields 50-100% higher than in Guggenheim
- But transmission better

- Engineering integration of rf difficult
 Easier with lower average gradient
 but where are the waveguides?

- Possible problem of rf breakdown with intense muon beam transit
• Mag Insulation transmission is poor
• HCC with ideal fields is better, even with low gradient
• But original RFOFO Guggenheim is best
Conclusion

• All stages for a "baseline" design have been simulated at some level
• 1.5 TeV Collider design now has acceptance for 25 mm mrad emittance
• Example of matching for final 50 T cooling done

• Significant technical problem is rf breakdown in magnetic fields
• But several possible solutions
 – ALD or other surface treatment
 – Cooled Al or Be cavities ← preferred solution
 – Magnetically insulated cavities
 – High pressure hydrogen gas filled cavities