Pion production in low energy range

presented by

Jarosław W. Pasternak

IFT Wrocław
Poland

ISN Grenoble
France
(in close collaborations with Johann Collot and Stephanie Schwenke)
• motivation for a study of pion production
• definition of a problem
• thin target results
• physical considerations of the used methods
• thick target results
• conclusions
Motivation for a study of the pion production

- pions as a source of neutrinos (K2K) and muons (neutrino factory, muon collider)
 \[\pi^\pm \rightarrow \mu^\pm \bar{\nu}_\mu \]
 \[\mu^\pm \rightarrow e^\pm \bar{\nu}_e \nu_\mu \]
- better estimations of atmospheric neutrino flux
- precise knowledge of pion yields: mirror of intranuclear physics
- pions used to test models of nuclear interactions based on considerations from nuclear and particle physics
• definition of a problem

 • lack of experimental results, especially for different (heavy) targets:
 - different energy ranges
 - both charges (π^+ and π^-)
 - angular distributions
 (data from HARP)

• simulation show:
 - \approx linear dependence of a total yield as a function of energy between (1-8)GeV and decreasing nature for higher energy

• possible collection in transverse direction
protons

π

target

x

y

z

transvers collection
○ thin target results

- test the physics of particle generation
- comparison FLUKA - UrQMD:

Fluka (CERN, Milano):
- enables full target geometry and includes transport and tracking of particles through the matter

UrQMD (Unified ultra-relativistic quantum molecular dynamics, Frankfurt):
- only nuclear interaction allowed
- in Geant4
- enables to use isoscalar projectiles (d, Hg,...)
...thin target results

proton

nucleus
...thin Hg-target results

- π^+ rapidity
- normalized yield versus lab rapidity
- normalized yield: $NY = \frac{\text{yield per bin}}{\text{total yield}} \cdot \text{(per charge)}$
- rapidity: $\text{rap}_c = \frac{1}{2} \cdot \log\left(\frac{p_c+E}{p_c-E}\right)$
 $1 < \text{rap}_c < 2$; c: direction of collection

![Graph showing normalized yield versus lab rapidity for π^+ in thin Hg at 2 GeV, comparing Fluka, UrQMD, and UrQMD with potential.]
...thin Hg-target results

- \(\pi^- \) rapidity

- normalized yield versus lab rapidity

- normalized yield: \(NY = \frac{\text{yield per bin}}{\text{total yield}} \cdot \text{(per charge)} \)

- rapidity: \(\text{rap}_c = \frac{1}{2} \cdot \log \left(\frac{p_c + E}{p_c - E} \right) \)
 \[1 < \text{rap}_c < 2; \ c: \text{ direction of collection} \]
...thin H-target results

- hydrogen target: angular momentum distribution: $p + p \rightarrow \pi^+ pn$, $p + p \rightarrow \pi^+ \pi^- pp$
- normalized yield versus angle

![Graph showing normalized yield versus angle](image)
...thin H-target results

- hydrogen target: spectrum
- normalized yield versus lab momentum
...thin Hg-target results

- π^+ - angular distribution
- normalized yield versus angle

![Angular distr. of Pi+ 2 GeV thin Hg](image)

Figure 1:
...thin Hg-target results

- π^- - angular distribution
- normalized yield versus angle
...thin Hg-target results

- π^+ - spectrum
- normalized yield versus lab momentum

![Graph showing normalized yield versus lab momentum for π^+ spectrum in Hg-target. The graph compares Fluka and UrQMD, with and without potential corrections.]
...thin Hg-target results

- π^- spectrum
- normalized yield versus lab momentum
...thin Hg-target results

- good pions (with $1 < rap_z < 2$)
- normalized yield versus angle
Circle physical considerations of the used methods

question: where could the differences of FLUKA and UrQMD come from?

• physical considerations treated similar for both:
 – initial nucleons in nuclei are sampled according to the nuclear density and Fermi-momentum
 – Pauli principle reduces an accessible phase-space

• differences:
 – FLUKA uses free cross sections
 – UrQMD uses cross sections in medium, according to the introduced effective masses and momenta
 – UrQDM contains much more hadronic species
 – used potential
thick target results

- we used FLUKA
- collection-sectors: collector is near the target → estimation of the number of pions collected per second in a kinematic window using a 4MW proton beam:
 \[1 < \text{rap}_x < 2 \] as a function of the collecting angle
- 2GeV: longitudinal collection on 20cm Hg-target, \(\varepsilon = 24 \cdot 10^{-3} \text{m.rad} \):
 \[8.3 \cdot 10^{13} \pi^+ / \text{seconds} ; 5.1 \cdot 10^{13} \pi^- / \text{seconds} \]
- 2GeV: transverse collection in \(\pi / \text{second} \):
 emittance \(\varepsilon = x \cdot px / m_0 = 6 \cdot 10^{-3} \text{m.rad} \)
 64 sectors

<table>
<thead>
<tr>
<th>angle</th>
<th>(\pi^+)</th>
<th>(\pi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>(9.2 \cdot 10^{13})</td>
<td>(7.2 \cdot 10^{13})</td>
</tr>
<tr>
<td>90</td>
<td>(3.5 \cdot 10^{13})</td>
<td>(2.6 \cdot 10^{13})</td>
</tr>
</tbody>
</table>
 emittance \(\varepsilon = x \cdot px / m_0 = 24 \cdot 10^{-3} \text{m.rad} \)
 64 sectors

<table>
<thead>
<tr>
<th>angle</th>
<th>(\pi^+)</th>
<th>(\pi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>(3.1 \cdot 10^{14})</td>
<td>(2.5 \cdot 10^{14})</td>
</tr>
<tr>
<td>90</td>
<td>(1.0 \cdot 10^{14})</td>
<td>(0.8 \cdot 10^{14})</td>
</tr>
</tbody>
</table>
...thick target results

- $1 < r a p_x < 2$ without special cut
- x versus p_x/m_0
...thick target results

- $1 < rap_x < 2$ with special cut
- x versus p_x/m_0
• experiment is really needed to check models
• collection according to the angle $40^\circ - 60^\circ$ gives the possibility to collect 3 times more pions than in the longitudinal collection
• further simulations including full geometry of quadrupols section is needed