Lab Tests of the Magnetohydrodynamics of Liquid Metal Jets

K.T. McDonald

Princeton U.

December 15, 2000

Targetry Workshop, BNL
Issues

A strong magnetic field can damp some hydrodynamic instabilities of a liquid metal jet:

- Breakup due to surface tension (Rayleigh instability).
- Some of the perturbations due to the proton beam.

But it is difficult to get a metal into a magnet:

- If conductivity is too high, almost impossible to enter the field.
- Radial pinch on entering a solenoid \Rightarrow increase in internal pressure.
- Axial retarding force on entering and exiting a solenoid.
- Strong shear forces, especially if enter at an angle.
- Quadrupole deformation due to transverse field.

Calculations give some confidence, but laboratory confirmation is needed that a liquid metal jet can enter the solenoid without undue distortion.
Use a 5-T solenoid
• with 4-cm warm bore,
and coil inner diameter of 6 cm.

• Mercury jet via a syringe with 1.5-mm diameter aperture.

• Jet velocity up to 3 m/s, determined from sagitta of arc.

• No noticeable difference in jet motion at 0 T and 5 T.
Axial retardation of the jet as it enters a solenoid scales as
\[
\frac{\sigma r^2 B^2}{\rho D}.
\]

For \(B = 20 \text{ T}, D = 30 \text{ cm} \) and \(r = 5 \text{ mm} \), the retardation is 320 times larger than in the first test.

\[\Rightarrow\] Need for further test, at parameters close to those for a neutrino factory.

Best option: 20-T, 20-cm diameter-warm-bore resistive magnet facility at the NHMFL (or similar facility in Grenoble).
Goals of the Test

Characterize the distortion of a mercury jet entering a 20-T solenoid.

- Types of distortion: deflection, shear, quadrupole.
- Dependence on jet velocity, radius, angle to magnetic axis, and proximity of nozzle to the magnet.
- Effect of pulsed vs. steady jet.
- Diagnostics: primarily visual; perhaps wire scan in phase 2.