Specifications from the Muon Accelerator Staging Scenario

- **6.75-GeV** (kinetic energy) proton beam with 3 ns (rms) pulse.
- 1-MW initial beam power, upgradable to 2 MW (perhaps even to 4 MW).
- 60-Hz initial rep rate for Neutrino Factory; 15-Hz rep rate for later Muon Collider.

The goal is to deliver a maximum number of soft muons, with ~40 < KE < ~180 MeV.

Target System Concept

Graphite target (ρ ~ 1.8 g/cm³), radiation cooled (with option for convection cooling); liquid metal jet as option for 2-4 MW beam power.

Target inside high-field solenoid magnet (20 T) that collects both μ^+.

Target and proton beam tilted with respect to magnetic axis.

Superconducting magnet coils shielded by He-gas-cooled W beads.

Proton beam dump via a graphite rod just downstream of the target.

Some of the proton and π/μ transport near the target is in air.

Target System Concept for a Muon Collider/Neutrino Factory

(TUPRI008, IPAC14, June 17, 2014)

K.T. McDonald, X. Ding, V.B. Graves, H.G Kirk, H. K. Sayed, N. Souchlas, D. Stratakis, R.J. Weggel

1Brookhaven National Laboratory, Upton, NY 11953 2UCLA, Los Angeles, CA 90095
3ORNL, Oak Ridge, TN 38731 4Particle Beam Lasers, Inc., Northridge, CA 91324
5Princeton University, Princeton, NJ 08544

Issues for Further Study

- Thermal “shock” of the short proton pulse on the graphite target. Probably OK for 2-MW and 60-Hz operation; 15-Hz option needs study.
- Cooling of target, and the W beads.
- Lifetime of target against radiation damage.
- Beam windows, and air activation.
- β^* and beam emittance at the target.
- To preserve liquid-metal-jet upgrade option, need related infrastructure installed at $t = 0$.

Target System Optimizations

- High-Z favored.
- Optima for graphite target: length = 80 cm (for $\rho = 1.8$ g/cm³), radius ≈ 8 mm (with 2mm (rms) beam radius σ_r), tilt angle = 65 mrad.
- Nominal geometric rms emittance $\epsilon_{\perp} = 5$ µm.
- $\beta^* = \sigma_r^2/\epsilon_{\perp} = 0.8$ m.
- Graphite proton beam dump, 120-cm long, 24-mm radius to intercept most of the (diverging) unscattered proton beam.
- The 20-T field on target should drop to the 2-T field in the rest of the Front End over ≈ 5 m.