Magnet Design for the Target System of a Muon Collider/Neutrino Factory

(THPRI087, IPAC14, June 19, 2014)

K.T. McDonald, 4 V.B. Graves, 2 H.G Kirk, 1 R.J. Weggel 3

1 Brookhaven National Laboratory, Upton, NY 11953, 2 ORNL, Oak Ridge, TN 38731,
3 Particle Beam Lasers, Inc., Northridge, CA 91324, 4 Princeton University, Princeton, NJ 08544

Possible Muon collider/Neutrino Factory Complex

- Graphite target ($\rho \sim 1.8$ g/cm3), radiation cooled.
- Target inside high-field solenoid magnet (20 T) that collects both μ^\pm.
- Target and proton beam tilted with respect to magnetic axis.
- Superconducting magnet coils shielded by He-gas-cooled W beads.
- Proton beam dump via a graphite rod just downstream of the target.

Front End

- Target
- Taper
- Decay Channel
- Buncher
- Rotator
- Cooler

Proton beam tube
15-T superconducting coil outsert, Stored energy ~ 3 GJ, ~ 100 tons
Last Final-Focus quad
Upstream proton beam window
5-T copper-coil insert. Water-cooled, MgO insulated
He-gas cooled W-bead shielding (~ 100 tons/module)

Chicane

The Front End solenoid magnets also capture high-energy protons.
A sequence of tilted coils forms a bent-solenoid Chicane to deflect these protons out of the muon beam.
A proton absorber (~ 10 cm Be) removes remaining soft protons after the Chicane.

Field Map
0 $< r < 4$ m
-5 $< z < 11$ m
($z = 0$ at center of target)