Targetry R&D in the 5-Year Plan

Harold G. Kirk
Brookhaven National Lab
Targetry Tasks

• Simulation (coordinator: Rick Fernow)
 - Benchmark MERIT results
 - Refine MHD modeling of beam/jet/field interactions
 - Refine nozzle simulations
 - Study Hg jet splash issues for Hg collection pool

• Facility Design (in conjunction with the MC RDR)
 - Upstream & downstream beam windows
 - Robotics for target replacement/repairs
 - Design of tungsten/water inner shielding
 - Study use of HTS conductor in target solenoid

• Hardware R&D (see pp. 4-9)
RDR Specifics

Issues in common with MC ZDR (Alan Bross):

• Proton Driver
 – Interface with Project X team to determine required modifications needed for NF

• Target Station
 – Simulation, next iteration on target facility, detailed engineering of component parts

• Pion Capture and Phase Rotation
 – Complete engineering design for front-end

• Cooling Channel
 – Finalize engineering design of Study 2a channel (MICE +)

 • Possible modifications
 – H_2 gas absorbers
 – Helical cooler
Post-MERIT Targetry Hardware Effort

- Hg Handling Issues
 - Continuous Hg Loop
 - Eurosol/ESS Collaboration
- Hg Jet optimization
 - Nozzle optimization
 - Reconfigured Optical Diagnostics
 - Improved Jet delivery
- Jet/Beam Dump Interaction
 - Jet/Dump Splash Studies
- Iron Plug Studies
- Tungsten-Carbide Shielding
Hg Handling Issues

- Engineer Hg loop
- Study CW Hg flow issues
- Acquire Hg safety experience
- Explore collaboration with Eurosol/ESS
Iron Plug

Purpose: Generate a more uniform magnetic field in jet delivery region

- More closely approximate NF/MC targetry concept
- Reduce jet distortion
- Nozzle/Jet Integration
- Mechanical forces and stress analysis essential
Beam Dump in Main Cryostat

- Assembly and maintenance issues require further thought
- Thermal management issues will be significant
- Simulation and hardware studies of Jet/dump splashes
Tungsten-Carbide Shielding

Shielding

Rudimentary Concept: Needs further development
TARGETRY DELIVERABLES

- Nozzle design for optimized Hg jet delivery
- Understanding of Jet/Dump interaction issues
- Operational experience with a continuous Hg loop
- Demonstration of impact of Fe plug on jet performance
- Design for a water-cooled tungsten-carbide shield
COST BREAKDOWN

<table>
<thead>
<tr>
<th></th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTEs</td>
<td>1.4</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>SWF (K$)</td>
<td>310</td>
<td>155</td>
<td>183</td>
<td>211</td>
<td>182</td>
</tr>
<tr>
<td>M&S (K$)</td>
<td>105</td>
<td>100</td>
<td>140</td>
<td>185</td>
<td>160</td>
</tr>
<tr>
<td>Total (K$)</td>
<td>415</td>
<td>255</td>
<td>323</td>
<td>396</td>
<td>342</td>
</tr>
</tbody>
</table>