Targetry Concept for a Neutrino Factory

EMCOG Meeting

CERN

November 18, 2003
World wide interest in the development of new proton drivers
New physics opportunities are presenting themselves

- Neutron Sources
 - European Spallation Source
 - US Spallation Neutron Source
 - Japanese Neutron Source
- Kaons
 - RSVP at BNL
 - KAMI at FNAL
- Muons
 - MECO and g-2 at BNL
 - SINDRUM at PSI
 - EDM at JPARC
 - Muon Collider
- Neutrinos
 - Superbeams
 - Neutrino Factories
Multi-MW New Proton Machines

SNS at 1.2 MW → 2.0 MW
JPARC 0.7 MW → 4.0 MW
FNAL 0.4 MW → 1.2 MW → 2.0 MW
BNL 0.14 MW → 1.0 MW → 4.0 MW

AGS Upgrade to 1 MW

High Intensity Source plus RFQ
200 MeV Drift Tube Linac
200 MeV
400 MeV
800 MeV
1.2 GeV

BOOSTER

AGS
1.2 GeV → 28 GeV
0.4 s cycle time (2.5 Hz)

0.2 s

To Target Station
To RHIC

Harold G. Kirk
High-power Targetry Challenges

High-average power and High-peak power issues

- Thermal management
 - Target melting
 - Target vaporization
- Thermal shock
 - Beam-induced pressure waves
- Radiation
 - Material properties
 - Radioactivity inventory
 - Remote handling

Harold G. Kirk
New physics opportunities are demanding more intense proton drivers.

1 MW machines are almost here! 4 MW machines are planned.

Targets for 1 MW machines exist but are unproven.

But no convincing solution exists yet for the 4 MW class machines.

Worldwide R&D efforts to develop targets for these new machines.

A key workshop concern was the lack of worldwide support facilities where promising new ideas can be tested.
Neutrino Factory

- Key parameter is neutrino flux
- Source strength is pre-eminent issue
- Maximize protons-on-target in order to maximize pions/muons collected

Muon collider

\[L = \frac{N_1 N_2 f}{A} \text{cm}^{-2} \text{s}^{-1} \]

- Gain in luminosity proportional to the square of source strength
- Small beam cross-sectional area (beam cooling) is also important

Harold G. Kirk
Neutrino Factory Targetry Concept

Capture low P_T pions in high-field solenoid
Use Hg jet tilted with respect to solenoid axis
Use Hg pool as beam dump

Engineered solution--P. Spampinato, ORNL
Achieving Intense Muon Beams

Maximize Pion/Muon Production

- Soft Pion Production
 - Higher Z material
 - High energy deposition
 - Mechanical disruption
 - High Magnetic Field

\[\text{Meson Production - 16 GeV } p + W \]

\[dN/dKE \ (1/\text{GeV}/\text{interacting proton}) \]

Harold G. Kirk
High-Z Materials

Key Properties

- Maximal soft-pion production
- High pion absorption
- High peak energy deposition
- Potential for extension beyond 4 MW (liquids)

Key Issues

- Jet dynamics in a high-field solenoid
- Target disruption
- Achievement of near-laminar flow for a 20 m/s jet
E951 Hg Jet Tests

- 1cm diameter Hg Jet
- 24 GeV 4 TP Proton Beam
- **No** Magnetic Field

![Diagram of proton beam and mercury jet](image)

- $t = 0 \text{ ms}$
- $t = 0.75 \text{ ms}$
- $t = 2 \text{ ms}$
- $t = 7 \text{ ms}$
- $t = 18 \text{ ms}$
CERN Passive Hg Thimble Test

Exposures to a BNL AGS 24 GeV 2 TP beam. T=0, 0.5, 1.6 and 3.4 ms.

Harold G. Kirk
CERN Hg Thimble Results

Simulations—Prykarpatskyy, BNL

Bulk ejection velocity as a function Of beam spot size. ISOLDE data is 17 TP at 1.4 GeV.
Key E951 Results

- Hg jet dispersal proportional to beam intensity
- Hg jet dispersal ~ 10 m/s for 4 TP 24 GeV beam
- Hg jet dispersal velocities $\sim \frac{1}{2}$ times that of “confined thimble” target
- Hg dispersal is largely transverse to the jet axis -- longitudinal propagation of pressure waves is suppressed
- Visible manifestation of jet dispersal delayed 40 μs
CERN/Grenoble Hg Jet Tests

- 4 mm diameter Hg Jet
- \(v = 12 \text{ m/s} \)
- 0, 10, 20T Magnetic Field
- No Proton Beam

A. Fabich, J. Lettry
NuFact’02

Harold G. Kirk
Key Jet/Magnetic Field Results

- The Hg jet is stabilized by the 20 T magnetic field
- Minimal jet deflection for 100 mrad angle of entry
- Jet velocity reduced upon entry to the magnetic field
Simulations at BNL (Samulyak)

Gaussian energy deposition profile
Peaked at 100 J/g. Times run from 0 to 124 μs.

Jet dispersal at t=100 μs with magnetic Field varying from B=0 to 10T
Bringing it all Together

We wish to perform a proof-of-principle test which will include:

- A high-power intense proton beam (16 to 32 TP per pulse)
- A high (> 15T) solenoidal field
- A high (> 10m/s) velocity Hg jet
- A ~1cm diameter Hg jet

Experimental goals include:

- Studies of 1cm diameter jet entering a 15T solenoid magnet
- Studies of the Hg jet dispersal provoked by an intense pulse of a proton beam in a high solenoidal field
- Studies of the influence of entry angle on jet performance
- Confirm Neutrino factory/Muon Collider Targetry concept
70° K Operation
15 T with 4.5 MW Pulsed Power
15 cm warm bore
1 m long beam pipe

Peter Titus, MIT

Harold G. Kirk
Pulsed Solenoid Performance

Pulse Coil Cooled to 70 K and Charged to 7200 A at 600 V, then -600 V

- 5T Peak Field with 2 inner coils; 540 KVA; 80° K
- 10T Peak Field with 2 inner coils; 2.2 MVA PS; 72° K
- 15T Peak Field with 3 coils; 2.2 MVA PS; 30° K
- 15T Peak Field with 3 coils; 4.4 MVA PS; 70° K

Harold G. Kirk
Possible Target Test Station Sites

Accelerator Complex Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BNL AGS</th>
<th>CERN PS</th>
<th>RAL ISIS</th>
<th>LANCE WNR</th>
<th>JPARC RCS</th>
<th>JPARC MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton Energy, GeV</td>
<td>24</td>
<td>24</td>
<td>0.8</td>
<td>0.8</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>p/bunch, 10^{12}</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>28</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Bunch/cycle</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>p/cycle, 10^{12}</td>
<td>72</td>
<td>32</td>
<td>20</td>
<td>28</td>
<td>83</td>
<td>300</td>
</tr>
<tr>
<td>Cycle length, µs</td>
<td>2.2</td>
<td>2.0</td>
<td>0.3</td>
<td>0.25</td>
<td>0.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Availability (?)</td>
<td>07</td>
<td>06</td>
<td>06</td>
<td>Now</td>
<td>08</td>
<td>09</td>
</tr>
</tbody>
</table>
Possible Targetry Test at JPARC

Target Test Site at CERN
Possible Experiment Location at CERN

Harold G. Kirk
A Letter of Intent to
the ISOLDE and Neutron Time-of-Flight
Experiments Committee

Studies of a Target System for
a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett1, Luca Bruno2, Chris J. Densham1, Paul V. Drumm1,
T. Robert Edgecock1, Helmut Haseroth2, Yoshinari Hayato3, Steven J. Kahn4,
Jacques Lettry2, Changguo Lu5, Hans Ludewig4, Harold G. Kirk4,
Kirk T. McDonald5, Robert B. Palmer4, Yarema Prykarpatsky4,
Nicholas Simos4, Roman V. Samulyak4, Peter H. Thieberger4,
Koji Yoshimura3

Spokespersons: H.G. Kirk, K.T. McDonald
Local Contact: H. Haseroth

Participating Institutions

1) RAL
2) CERN
3) KEK
4) BNL
5) Princeton University

Harold G. Kirk
We propose running without longitudinal bunch compression allowing for a reduced beam spot size of ~2mm rms radius.
Original Cryogenic Concept at BNL

- BNL specific solution
- Heat exchanger
- LH₂ or LN₂ primary cooling
- Circulating gaseous He secondary cooling
Simplified Cryogenic System
Battery Power Supply R&D

Battery/Charger
12V 1400A

Mech. Switch
1500V 1600 A

IGCT 600V 4000A

Load
Harold G. Kirk
Battery Power Supply (Cont)

Mechanical Switch capable of 4.4 MW Pulsed System
Pulsed Solenoid Project Cost Profile

Magnet
- Fabrication $410 K
- Monitoring $80 K
- Testing $90 K
- Shipping $15 K

Cryogenic System (LN$_2$ without Heat Exchanger)
- Cryo $300 K

PS (Battery array with switching/charging/bussing)
- PS System $460 K

Total Project Cost $1355 K