The MERIT
High-Power Target Experiment

Muon Collider Design Workshop

BNL

December 3-7, 2007

Harold G. Kirk
Brookhaven National Laboratory
The Collaborating Institutions

U.S.

Brookhaven National Laboratory
Fermi National Accelerator Laboratory
Oak Ridge National Laboratory
Princeton

Europe

CERN
Rutherford Appleton Laboratory

MC Workshop Dec. 3-7
The Neutrino Factory Target Concept

Maximize Pion/Muon Production
- Soft-pion Production
- High-Z materials
- High Magnetic Field

Meson Production - 16 GeV $p + W$

$dN/dKE (1/GeV/interacting proton)$

Pion Kinetic Energy, GeV
The MERIT Experiment

MERcury Intense Target

MC Workshop Dec. 3-7

Harold G. Kirk
Site of experiment at CERN

MC Workshop Dec. 3-7

Harold G. Kirk
Profile of the Experiment

- 14 and 24 GeV proton beam
- Up to 30×10^{12} protons (TP) per 2.5 μs spill
- Proton beam spot with $r \leq 1.5$ mm rms
- 1 cm diameter Hg Jet
- Hg Jet/proton beam off solenoid axis
 - Hg Jet 33 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet
Proton Beam Characteristics

- PS was run in a harmonic 4, 8, and 16 mode
- We can fill any of the rf buckets with sub-bunches at our discretion.
- Total PS fill can contain up to 30 TP.
- Fast extraction can accommodate entire 2.5 μs PS fill.
- Single turn extraction at 24 GeV
- Partial/multiple extraction possible at 14 GeV
- First Beam on Target October 17 2007
Run plan for the CERN PS beam

The PS Beam Profile allows for:

- Varying beam charge intensity from 1 TP to 30 TP.
- Studying influence of solenoid field strength on jet dispersal (vary B_z from 0 to 15T).
- Study possible cavitation effects by varying PS spill structure (Pump/Probe)
MERIT Experiment in the TT2a Area

- Material access shaft
- Personnel access
- Racks & electronics
- N2 Exhaust line
- TUNNEL TT2A
- TT2 A TUNNEL
- Beam dump
- Solenoid & Hg loop
- Upstream beam elements (new)
 - Quadrupoles for final focusing
 - Collimator
 - Beam profile measurement
 - Beam intensity measurement

MC Workshop Dec. 3-7

Harold G. Kirk
Installed in the CERN TT2a Line

Before Mating

After Mating and Tilting

MC Workshop Dec. 3-7
Beam instrumentation

Beam current transformer: 500 MHz sampling!

Particle detector response:
The Pump/Probe Detectors

- ACEM (Aluminum Cathode Electron Multiplier)
- Diamond

In beam line, upstream of target

+/- 10 degrees
+/- 20 degrees

Behind dump in beam line

Harold G. Kirk

MC Workshop Dec. 3-7
Diamond Left 20^0 Response

Oct. 29, 2007
14 GeV
4TP
10T Field
15m/s Hg Jet

Harold G. Kirk
A 3T Pump Pulse and a 1TP Probe Pulse with 1ms delay

Run 3011, Diam right 10, 1.0 ms Pump/Probe [Pump]

Run 3011, Diam right 10, 1.0 ms Pump/Probe [Probe]
MERIT Beam Shots

- 30×10^{12} protons/pulse!!!
- 24 GeV
- 115kJ !!! a PS record

Graph:
- X-axis: Beam intensity [protons/pulse]
- Y-axis: Integrated beam intensity to MERIT [10^{12} protons]
- Legend: Hg target OFF, Hg target IN

MC Workshop Dec. 5-7
The Optical Diagnostic Cameras

FastVision 1

SMD

FastVision 2

Video camera

20 m/s Hg jet, 7 Tesla field

0.1 ms/frame

2 ms/frame

MC Workshop Dec. 3-7
Influence of Magnetic Field

Jet Velocity is 15m/s

0T 5T

10T 15T

MC Workshop Dec. 3-7

Harold G. Kirk
14 GeV Proton Beam on Hg Jet with Magnetic Field

Viewport 1 at 2ms

Viewport 3 at 26ms

October 26, 2007
Beam Pulse at 8:39pm
Central European Daylight Time

Hg Jet 15m/s
Solenoid Field 5T
Proton Intensity 10TP

Harold G. Kirk
Brookhaven National Laboratory
15TP 14GeV Proton Beam

Oct. 27, 2007
Solenoid Field
at 5T

Viewport 2

Beam 5016, Hg 15m/s, 100μs/frame, Total 1.6ms

MC Workshop Dec. 3-7
20TP 14GeV Proton Beam

Oct. 27, 2007
Solenoid Field
at 10T
Viewport 2

Beam 5020, Hg 15m/s, 100μs/frame, Total 1.6ms

MC Workshop Dec. 3-7
Viewport 3: Jet/proton interaction

Shot 16014
- 14 GeV
- 12×10^{12} protons/pulse
- B-field 10 T
- 500μs/frame

Disruption Length = 16.5 cm
The 24 GeV 30TP shot

Beam pulse energy = 115kJ
B-field = 15T
Jet Velocity = 20 m/s
Disruption Length = 28 cm

We will replace the 28cm disruption length (2 interaction lengths)

Then the jet transport time is 28cm/20m/s = 14ms
→ Rep rate of 70Hz
→ Proton beam power at that rate is 115kJ *70 = 8MW
4TP + 4TP Delay Study at 14 GeV

Single Turn Extraction ➔ 0 Delay

4TP Probe extracted on subsequent turn ➔ 3.2 μs Delay

4TP Probe extracted after 2nd full turn ➔ 5.8 μs Delay

Target supports 14 GeV 4TP beam at 172kHz rep rate without disruption

MC Workshop Dec. 3-7

Harold G. Kirk
Data Analysis Pipeline

Disruption threshold based on proton beam characteristics
 Intensity variations
 Proton beam harmonic structure
Disruption threshold based on solenoid field strength
Pump/probe studies
 15TP pump + 5TP probe with delays 2 to 700μs
 24 GeV pump/probe studies with delays < 2μs
Magnetodynamic studies
 disruption (filamentation) velocities
 quadruple distortions
Proton beam spot size analysis
The Neutrino Factory/Muon Collider target concept has been validated for 4MW 50Hz operations.