MERIT Hg System Design Update

V.B. Graves
P.T. Spampinato
T.A. Gabriel

MERIT Collaboration Meeting
Princeton University
Nov 17-18, 2005
Outline – Design Issues

- Design changes since last meeting
 - Syringe piping
 - Sump tank
- In-situ nozzle replacement
- Beam window fabrication
- Optic window materials
- Hg jet distortion
Hg Syringe System at Design Review

- Baseplate
- Discharge manifold
- Relief valve
- Rectangular sump tank
- Multiple Hg cylinder ports
Latest Syringe System

- No baseplate
- No manifold
- No relief valve
- Vent & Hg discharge are same pipe
- Drain & Hg inlet are same pipe
- Lugs on cylinders not representative
More of the Latest System

- Circular sump tank
 - Drain at back
 - Ports for Hg fill, Hg extraction, cylinder vent, overpressure, Hg level sensor
 - Will support vacuum operations

- Sump tank supported by Hg cylinder

- Hg pressure transducer on supply pipe
Effects of Syringe Changes

- Real cylinder models not available yet
 - Overall syringe height decreased
 - Length will increase
Magnet Model Changes
In-situ Nozzle Replacement

- Extend secondary sleeve past end of magnet to expose screws
- Plenum *might* be accessible from end, non-plenum more difficult
- Risk of spilling Hg into secondary sleeve much greater
- Details of design not initiated
Replaceable Nozzle Recommendations

- Magnet end not readily accessible with all utility lines connected

- Proposed MIT testing
 - Conduct integrated tests with level baseplate until nozzle finalized
 - Changeouts better controlled, less risk of Hg spill if Hg system extracted from magnet
 - Tilt baseplate for final tests
Beam Windows

- Currently have a simple, flexible beam window concept
- Welded attachments provide more usable space for beam (greater tilt capacity)
- Discussions with ORNL welding expert did not lead to proven welding process
 - Welding may be feasible but require development (and $$)
- Mechanical attachment possible but at expense of reducing tilt accommodation
- Resolution needed now to finish design
Optic Windows

- **Current**: fused silica backed by lexan
- **Alternative**: Sapphire instead of silica
Silica vs. Sapphire

- Mechanical properties of sapphire generally exceed those of silica

- Design tensile strength
 - Silica: 48 MPa
 - Sapphire: 400 MPa

- Use sapphire without lexan???

Sapphire Table of General Properties

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Structure</td>
<td>hexagonal-rhombohedral</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>101.96</td>
</tr>
<tr>
<td>Lattice Constants</td>
<td>A = 4.785, c = 13,000</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>3.98</td>
</tr>
</tbody>
</table>

Hardness	9 Mohs
	1800 knoop parallel to C-axis
	2200 knoop perpendicular to C-axis

Water Absorption	Nil
Young Modulus (Gpa)	379 at 30° to C-axis
	352 at 45° to C-axis
	345 at 60° to C-axis
	386 at 75° to C-axis
Shear Modulus (Gpa)	145
Bulk Modulus (Gpa)	240
Bending Modulus /	350 to 690
Modulus of Rupture (MPa)	
Tensile strength (MPa)	400 at 25°C
	275 at 500°C
	345 at 1000°C

Fused Silica Properties

Fused Silica GE
Hg Jet Distortion

- Discussions indicating that jet distortion in field is real and potentially serious effect

- Alternatives
 - Move nozzle closer to high field (changes angle)
 - Decrease nozzle/solenoid angle & put nozzle above beam
 - Would simplify Hg supply & lend itself to non-plenum approach
 - Would not be able to decrease magnet tilt angle without changing nozzle because nozzle would intercept beam
Hg System Costs

• Syringe ~$80K

• Remaining items
 – Common baseplate
 – Target transporter
 – Target cart
 – Primary / secondary containment
 – Controls hardware ~$5K
 – Integration & testing

• More accurate fabrication cost estimate to be initiated next week
Conclusions

- Final design details of Hg system must be decided
 - Tilt angle
 - Nozzle position
 - Beam window fabrication & attachment

- Fabrication drawings must be completed soon so procurement process can begin
 - Go-forward design approach must be decided now