Weld Results
Yan Zhan
SUNY Stony Brook

June 13rd, 2013
Outline

• Studied Parameters
• Results Analysis
 – Contours Plots For the Weld Region
 – Axial Velocity Profile at Different Locations Near the Weld
 – Plots of Turbulent Kinetic Energy and Momentum Thickness Near the Weld
 – Line Plot Goes From Inlet To Outlet
Studied Parameters

<table>
<thead>
<tr>
<th>Name (Unit)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Shear Stress (kg/(m \cdot s^2))</td>
<td>(\tau_w = \mu \frac{\partial U}{\partial y} \bigg</td>
</tr>
<tr>
<td>Friction Velocity (m/s)</td>
<td>(u_\tau = \sqrt{\tau/\rho})</td>
</tr>
<tr>
<td>Turbulent Kinetic Energy (m^2/s^2)</td>
<td>(k = \frac{1}{2}(\overline{(u')^2} + \overline{(v')^2} + \overline{(w')^2}))</td>
</tr>
<tr>
<td>Turbulent Dissipation Rate (m^2/s^3)</td>
<td>(\epsilon \equiv \frac{\mu}{\rho} \frac{\partial u'_i}{\partial x_k} \frac{\partial u'_i}{\partial x_k})</td>
</tr>
<tr>
<td>Turbulence Intensity (%)</td>
<td>(I \equiv \frac{u'}{U_{\text{mean}}} = \frac{\sqrt{2k/3}}{\sqrt{U^2 + V^2 + W^2}})</td>
</tr>
<tr>
<td>Momentum Thickness (m)</td>
<td>(\delta_\theta = \int_0^a \frac{U}{U_{\text{max}}} \left(1 - \frac{U}{U_{\text{max}}} \right) dr)</td>
</tr>
</tbody>
</table>
Weld Region
X=0.0423

X=0.04065
(weld center)

X=0.039

X=0.0385
Planes in the Vicinity of the Weld

Upstream place
X=0.0430405

Downstream place
X=0.0380405

Z = 0 (α = 0°)
Upstream place $X=0.0430405$
Downstream place X= 0.0380405
At the Exit

$\alpha = 0^\circ$
Momentum Thickness At the Vicinity of the Weld

Upstream Plot

Downstream Plot
Lines Go From Inlet to Outlet
Wall Shear Stress (kg/m*s)

S: distance to the pipe inlet along the center line

s ~ 13 at weld

S: distance to the pipe inlet along the center line
Turbulent Kinetic Energy (m^2/s^2)

- S
- 0 5 10 15
- $1E^{-05}$ $2E^{-05}$ $3E^{-05}$ $4E^{-05}$
- Top
- Bottom

Graph showing the comparison of turbulent kinetic energy at different positions (top and bottom) with respect to a parameter S. The lines indicate a sharp increase at certain values of S.
Turbulent Dissipation Rate (m^2/s^3)

- Top
- Bottom