A Coupled Level Set/Volume-of-Fluid (CLSVOF) Method for Target Flow Simulation

Yan Zhan

8-18-2011
Outline

• What is CLSVOF?
• Why CLSVOF?
• How to implement CLSVOF?
What is CLSVOF?

<table>
<thead>
<tr>
<th>Volume of Fluid (VOF)</th>
<th>Level Set (LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Volumetric phase fraction F</td>
<td>• Level-Set function Φ</td>
</tr>
<tr>
<td>Phase 1 $F=1$</td>
<td>Phase 1 $\Phi>0$</td>
</tr>
<tr>
<td>Phase 2 $F=0$</td>
<td>Phase 2 $\Phi<0$</td>
</tr>
<tr>
<td>Interface $0<F<1$</td>
<td>Interface $\Phi=0$</td>
</tr>
<tr>
<td>• Transport of F:</td>
<td>• Transport of F:</td>
</tr>
<tr>
<td>$(\rho F)_t + \nabla \cdot (\rho \tilde{U} F) = 0$</td>
<td>$(\rho \phi)_t + \nabla \cdot (\rho \tilde{U} \phi) = 0$</td>
</tr>
<tr>
<td>• Mass-conservative</td>
<td>• Robust geometric information (normals and curvatures); automatic handling of topological changes (merging and pinching);</td>
</tr>
<tr>
<td>• Diffusion of the interface</td>
<td>• Not mass-conservative</td>
</tr>
</tbody>
</table>

Volume of Fluid

Level Set

CLSVOF
Why CLSVOF?

Sussman (2000)
Menard (2007)

Time loop complete?
End

Initialization
Start time loop
Reconstruction of F from ϕ

Advection of F and ϕ

Reconstruction of ϕ from F

Reinitialisation of ϕ

Calculation of P and u

Mass Conservation

Why CLSVOF?

Development of the liquid jet (time step is 2.5 μm) (Menard, 2007)

<table>
<thead>
<tr>
<th>Jet characteristics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter, D (μm)</td>
<td>Velocity (m s⁻¹)</td>
<td>Turbulent intensity</td>
<td>Turbulent length scale</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>$u'/U_{\text{liq}} = 0.05$</td>
<td>0.1 D</td>
</tr>
<tr>
<td>Phase</td>
<td>Density (kg m⁻³)</td>
<td>Viscosity (kg m⁻¹ s⁻¹)</td>
<td>Surface tension (N m⁻¹)</td>
</tr>
<tr>
<td>Liquid</td>
<td>696</td>
<td>1.2×10^{-3}</td>
<td>0.06</td>
</tr>
<tr>
<td>Gas</td>
<td>25</td>
<td>1×10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>
Why CLSVOF?

Liquid jet surface and break-up near the jet nozzle

Liquid parcels
How to implement CLSVOF?

- Couple LS with VOF within the CFD code FLUENT by implementing user defined functions (UDF)
- UDF
 - User written program that can be linked with FLUENT at run-time
 - Programmed in C and FLUENT defined macros
 - User-defined scalar (UDS) transport modeling customize FLUENT for level set equation
How to implement CLSVOF?
How to implement CLSVOF?

Initialization → Start time loop → Advection of ϕ

Calculate κ, \bar{n} from ϕ

Get u, P, surface tension from N-S

Advection of F and ϕ

Couple LS and VOF $H(\phi) = F$

Reinitialisation of ϕ

Time loop complete? → End

How to implement CLSVOF?

• B.A. Nichita’s test case
 – A bubble rising in a viscous fluid due to gravity

![Level set contour (red) and volume-of-fluid contour (green) without coupling between LS and VOF (with large loss of mass).](t = 0.2s)

![Level set contour (red) and volume-of-fluid contour (green) after solving the coupling equation between LS and VOF.](t = 0.2s)
How to implement CLSVOF?

- Setup UDS for LS in FLUENT

Scalar ϕ Transport Equation

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \tilde{U} \phi) = 0$$

- Unsteady term
 $$\frac{\partial \rho \phi}{\partial t}$$
- Convection term
 $$\nabla \cdot (\rho \tilde{U} \phi)$$
- Diffusive term
 $$0$$
- Source term
 $$0$$

Additional term appear for turbulent flow such as

$$- \rho u' \phi' = \Gamma \frac{\partial \phi}{\partial x_j}$$
How to implement CLSVOF?

- Setup UDS for LS in FLUENT
 - Set number of UDS
 - Set UDS terms (Appendix A)
 - DEFINE_UDS_UNSTEADY
 - Get unsteady term for scalar equation
 - DEFINE_UDS_FLUX
 - Returns user specified flux
 - DEFINE_DIFFUSIVITY
 - Returns user diffusion coefficient (Γ)
 - DEFINE_SOURCE
 - Set UDS boundary conditions
 - Constant
 - UDF: DEFINE_PROFILE
Appendix Equations

- **Incompressible two-phase flow**

\[\nabla \cdot U = 0 \]

\[U_t + U \cdot \nabla U = -\frac{\nabla p}{\rho(\phi)} + \frac{1}{\rho(\phi)} \nabla \cdot (2\mu(\phi)D) - \frac{1}{\rho(\phi)} \gamma \kappa(\phi) \nabla H(\phi) + F \]

\[\phi_t + U \cdot \nabla \phi = 0 \]

\[F_t + \nabla \cdot (UF) = 0 \]

Density \(\rho(\Phi) \), viscosity \(\mu(\Phi) \), and curvature \(\kappa(\Phi) \) are written as,

\[\rho(\phi) = \rho_g (1 - H(\phi)) + \rho_i H(\phi) \]

\[\mu(\phi) = \mu_g (1 - H(\phi)) + \mu_i H(\phi) \]

\[\kappa(\phi) = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} \]

\(D \) is defined as the rate of deformation tensor

\[D = (\nabla U) + (\nabla U)^T \]
Appendix Equations

• Incompressible two-phase flow

The surface tension force is

\[
\frac{1}{\rho(\phi)} \gamma \kappa(\phi) \nabla H(\phi)
\]

where \(H \) is the Heaviside function,\(\)

\[
H(\phi) = \begin{cases}
1 & \text{if } \phi > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(F \) will be initialized in each computational cell \(\Omega_{ij} \)

\[
F_{ij} = \frac{1}{\Delta r \Delta z} \int_{\Omega_j} H(\phi(r,z,0)) r dr dz
\]

where \(\Omega_{ij} \) is

\[
\Omega_{ij} = (r,z) \big| r_i \leq r \leq r_{i+1} \text{ and } z_j \leq z \leq z_{j+1}
\]
Appendix Equations

- Re-Initialization

 Reinitialize ϕ

 $$\int_V \frac{\partial \phi}{\partial \tau} + \int_V w \cdot \nabla \phi = \int_V \text{sign } \phi_0$$

 where w is the characteristic velocity pointing outward from the free surface

 $$w = \text{sign } \phi_0 \frac{\nabla \phi}{|\nabla \phi|}$$

 The sign function is

 $$\text{sign}_\epsilon(\phi_0) = 2[H_\epsilon(\phi_0) - 1/2]$$