Beta beam R&D status

Elena Wildner, CERN
on behalf of
the Beta Beam Study Group
EURISOL/Euronu
Outline

- Recall, EURISOL
- Ion Production
- Loss Management
- Improvements
- New Program, EuroNu
The beta-beam options

- Low energy beta-beams
 - Lorentz gamma < 20, nuclear physics, double beta-decay nuclear matrix elements, neutrino magnetic moments

- The medium energy beta-beams or the EURISOL beta-beam
 - Lorentz gamma approx. 100 and average neutrino energy at rest approx. 1.5 MeV (P. Zucchelli, 2002), choice for first study

- The high energy beta-beam
 - Lorentz gamma 300-500, average neutrino energy at rest approx. 1.5 MeV

- The very high energy beta-beam
 - Lorentz gamma >1000

- The high Q-value beta-beam
 - Lorentz gamma 100-500 and average neutrino energy at rest 6-7 MeV

- The Electron capture beta-beam
The EURISOL scenario

- Based on CERN boundaries
- Ion choice: 6He and 18Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100/100
 - SPS allows maximum of 150 (6He) or 250 (18Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory

- Achieve an annual neutrino rate of
 - 2.9×10^{18} anti-neutrinos from 6He
 - 1.1×10^{18} neutrinos from 18Ne

- The EURISOL scenario will serve as reference for further studies and developments: Within EuroNu we will study 8Li and 8B
Options for production

- ISOL method at 1-2 GeV (200 kW)
 - $>1 \times 10^{13}$ 6He per second
 - $<8 \times 10^{11}$ 18Ne per second
 - 8Li and 8B not studied
 - Studied within EURISOL

- Direct production
 - $>1 \times 10^{13}$ (?) 6He per second
 - 1×10^{13} 18Ne per second
 - 8Li and 8B not studied
 - Studied at LLN, Soreq, WI and GANIL

- Production ring
 - 10^{14} (?) 8Li
 - $>10^{13}$ (?) 8B
 - 6He and 18Ne not studied
 - Will be studied in the future

Aimed:
- He 2.9×10^{18} (2.0 10^{13}/s)
- Ne 1.1×10^{18} (2.0 10^{13}/s)

More on production:
see talks by
M. Lindroos and
P. Delahaye, FP7
6He production from 9Be(n,α)

Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).

6He production rate is $\sim 2 \times 10^{13}$ ions/s (dc) for ~ 200 kW on target.

Projected values, known x-sections!
Preliminary results from Louvain la Neuve, CRC

- Production of 10^{12} 18Ne in a MgO target:
 - At 13 MeV, 17 mA of 3He
 - At 14.8 MeV, 13 mA of 3He
- Producing 10^{13} 18Ne could be possible with a beam power (at low energy) of 2 MW (or some 130 mA 3He beam).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.
- To be studied:
 - Extraction efficiency
 - Optimum energy
 - Cooling of target unit
 - High intensity and low energy ion linac
 - High intensity ion source

S. Mitrofanov and M. Loislet at CRC, Belgium
Light RIB Production with a 40 MeV Deuteron Beam

- T.Y. Hirsh, D. Berkovits, M. Hass (Soreq, Weizmann I.)
- Studied 9Be(n,α)6He, 11B(n,α)8Li and 9Be(n,2n)8Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the 6He production rate via the two stage targets setup is $\sim 6 \cdot 10^{13}$ atoms per second.
New approaches for the production

Will be studied in Euronu FP7
The production ring concept: review

- Low-energy Ionization cooling of ions for Beta Beam sources –
 D. Neuffer (To be submitted)

 - Mixing of longitudinal and horizontal motion necessary
 - Less cooling than predicted
 - Beam larger but that relaxes space charge issues
 - If collection done with separator after target, a Li curtain target with \(^3\)He and Deuteron beam would be preferable
 - Separation larger in rigidity
Challenge: collection device

- A large proportion of beam particles (6Li) will be scattered into the collection device.
- The scattered primary beam intensity could be up to a factor of 100 larger than the RI intensity for 5-13 degree using a Rutherford scattering approximation for the scattered primary beam particles (M. Loislet, UCL)
- The 8B ions are produced in a cone of 13 degree with 20 MeV 6Li ions with an energy of 12 MeV±4 MeV (33%!).

![Diagram showing collection off axis (Wien Filter) and collection on axis with Rutherford scattered particles and 8B-ions.]

8B-ions
Rutherford scattered particles
Collection off axis (Wien Filter)
Collection on axis
8B-ions

Nufact 2008
The Beta Beam WP
Ongoing work on Radiation issues

- **Radiation safety** for staff making interventions and maintenance at the target, bunching stage, accelerators and decay ring
 - 88% of 18Ne and 75% of 6He ions are lost between source and injection into the Decay Ring
 - Detailed studies on RCS
 - PS preliminary results available
- Safe **collimation** of "lost" ions during stacking
 - ~1 MJ beam energy/cycle injected, equivalent ion number to be removed, ~25 W/m average
- **Magnet protection** (PS and Decay ring)
- Dynamic **vacuum**
- First study (Magistri and Silari, 2002) shows that Tritium and Sodium production in the **ground water** around the decay needs to be studied
Loss management

- Losses during acceleration

- Preliminary results:
 - Manageable in low-energy part.
 - PS heavily activated (1 s flat bottom).
 - Collimation? New machine?
 - SPS ok.
 - Decay ring losses:
 - Tritium and sodium production in rock is well below national limits.
 - Reasonable requirements for tunnel wall thickness to enable decommissioning of the tunnel and fixation of tritium and sodium.
 - Heat load should be ok for superconductor (E. Wildner, CERN, F. Jones, TRIUMF, PAC07).
Radioprotection: Detailed study for RCS

Stefania Trovati, CERN

1. Injection losses
2. RF capture losses
3. Decay Losses

- Shielding
- Airborne activity (in tunnel/released in environment)
- Residual dose

- All within CERN rules
- 1 day or one week depending on where for access* (20 mins for air)
- Shielding needed (with margin) 4.5 m concrete shield

* “Controlled area”

RCS design: See talk by A. Lachaize,
Activation and coil damage in the PS

StrahlSim: Losses

He-beam. Decay products tracked to the collimator and beampipe (red & black curves).

- The coils could support 60 years operation with a EURISOL type beta-beam

M. Kirk et. al GSI
Particle turnover in decay ring

- Momentum collimation: \(~5 \times 10^{12} \) \(^{6}\)He ions to be collimated per cycle
- Decay: \(~5 \times 10^{12} \) \(^{6}\)Li ions to be removed per cycle per meter
Decay Ring Stacking: experiment in CERN PS

Ingredients

- h=8 and h=16 systems of PS.
- Phase and voltage variations.

S. Hancock, M. Benedikt and J.-L. Vallet, *A proof of principle of asymmetric bunch pair merging, AB-Note-2003-080 MD*
Decay Ring Collimation

A. Chancé and J. Payet, CEA Saclay, IRFU/SACM

- Momentum collimation: A first design has been realized for a collimation in one of the long straight sections. Only warm magnets are used in this part.
- A dedicated extraction section for the decay products at the arc entries is designed.

P. Delahaye, CERN

- Collimation system studies ongoing
Heat Deposition study in Decay Ring

- Need to reduce a factor 5 on midplane
 - Liners
 - Open Midplane magnets

Lattice design: A. Chancé and J. Payet, CEA Saclay, IRFU/SACM
We give the midplane opening, the field and the needed aperture: design routines have been developed to produce a magnet with good field quality.

Aluminum spacers possible on midplane to retain forces: gives transparency to the decay products. Special cooling and radiation dumps may be needed.
Neutrino flux from a beta-beam

- EURISOL beta-beam study
 - Aiming for 10^{18} (anti-)neutrinos per year

- Can it be increased to 10^{19} (anti-) neutrinos per year? This can only be clarified by detailed and site specific studies of:
 - Production
 - Bunching
 - Radiation protection issues
 - Cooling down times for interventions
 - Tritium and Sodium production in ground water
For 15 effective stacking cycles, 54% of ultimate intensity is reached for 6He and for 20 stacking cycles 26% is reached for 18Ne.
- Left: Cycle without accumulation
- Right: Cycle with accumulation. Note that we always produce ions in this case!
Alternatives

- We have to be open to new technologies: shortfall in production from targets can be remedied by stepwise implementation of new ideas
- We have to be open to new ideas: Monochromatic beta beams
- Follow development and ideas from other laboratories (FNAL)
- Follow detector choices and implantation regions
The beta-beam in EURONU DS (I)

- The study will focus on production issues for 8Li and 8B
 - 8B is highly reactive and has never been produced as an ISOL beam
- Production ring enhanced direct production
 - Ring lattice design
 - Cooling
 - Collection of the produced ions (UCL, INFN, ANL), release efficiencies and cross sections for the reactions
- Sources ECR (LPSC, GHMFL)
- Supersonic Gas injector (PPPL)

Parallel studies
- Multiple Charge State Linacs (P Ostroumov, ANL)
- Intensity limitations

See talk by P. Delahaye
The beta-beam in EURONU DS (II)

- Optimization of the Decay Ring (CERN, CEA, TRIUMF)
 - Lattice design for new ions
 - Open midplane superconducting magnets
 - R&D superconductors, higher field magnets
 - Field quality, beam dynamics
 - Injection process revised (merging, collimation)
 - Duty cycle revised
 - Collimation design
 - See talk by A. Chancé

- A new PS?
 - Magnet protection system
 - Intensity limitations?

- Overall radiation & radioprotection studies
Improvements of the EURISOL beta-beam

- Increase production, improve bunching efficiency, accelerate more than one charge state and shorten acceleration
 - Improves performance linearly
- Accumulation
 - Improves to saturation
- Improve the stacking: sacrifice duty factor, add cooling or increase longitudinal bunch size
 - Improves to saturation
- Magnet R&D: shorter arcs, open midplane for transparency to decay
 - Improves to saturation
Conclusions

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
- First coherent study of a beta-beam facility
- A beta-beam facility using ^8Li and ^8B
- Experience from EURISOL
- First results will come from Euronu DS WP (starting fall 2008)
Acknowledgements

Particular thanks to
M. Lindroos,
M. Benedikt,
A. Fabich,
P. Delahaye
for contributions to the material presented.