MARS flux simulations - update

Sergei Striganov
Fermilab
June 3, 2009
Technical problems

- Detectors are small 0.75x0.75x0.05 cm3

- Direct MARS simulations can not provide acceptable statistical accuracy in reasonable time (7x24 hours 16 CPU)

- Two ways to get small enough statistical errors:
 1. using large detector size
 2. pre-calculate sources for all detectors and run sources until get small statistical errors
Choice of methods

- Even with 20x20x0.1 cm3 detectors statistical errors exceed 40% for one of detectors in run
- Jet vertical radius is determined by magnetic field:
 - 0 Tesla – 8.65 mm, 5 Tesla – 8.4 mm, 10 Tesla – 7.95 mm.
 Jet horizontal radius is same for round jet, but density is reduced.
 For elliptic jet horizontal radius is 0.25 cm2/vertical radius.
 Ilias model is used to determine beam size as function of beam intensity
- Source terms were calculated for 7 setups:
 - elliptic jet, 0 Tesla, 0.25 Tp
 - elliptic jet, 5 Tesla, 16 Tp
 - elliptic rising radius jet, 5 Tesla, 16 Tp
 - round jet, 0 Tesla, 0.25 Tp
 - round jet, 5 Tesla, 16 Tp
 - no jet, 0 Tesla, 0.25 Tp
 - no jet, 5 Tesla, 16 Tp
Detector size in simulation

- All previous calculation were performed with large detectors. It is important to check how results depends on detector size.
- Simulations with large detector size (with reduced and/or real density) overestimate results obtained with real detector size.
- It is more simple to run jobs with real detector size and pre-calculated sources, then find acceptable large detector size.
Preliminary results

14 GeV/c proton on gravity affected mercury jet

Charged particle flux, no jet, 14 GeV/c
Conclusion

- Simulation of particle detector signals should be performed with real detector size.
- It looks like that difference of detector signals for round and elliptic jet are not small.
- Systematic problems with -20 degree detector still unclear.
- Simulation with 5 other inputs should clarify dependence of detector signals on magnetic field and beam intensity.
- Update of measured detector signals at 14 and 24 GeV/c and different magnetic fields and beam intensities is needed.