Muon Accelerator Front-End Status

Diktys Stratakis
Brookhaven National Laboratory

MAP Collaboration Meeting
May 29, 2014
Fermi National Laboratory, Batavia IL, USA
Acknowledgement

• Front-End is a core building block of a Neutrino Factory and a Muon Collider
Front-End (FE) channel

• Major components include:
 • Target & capture
 • Chicane
 • Decay channel
 • Buncher
 • Phase-Rotator
Outline

• Front-end major sub-systems
 • Target & Capture Solenoid
 • Chicane
 • Drift Channel
 • Buncher
 • Phase-Rotator
• Future work & challenges
• Summary
Accomplishments after DOE Review

- Conceptual design of a carbon target, optimized for 1 MW 6.75 GeV proton beam.
- Feasibility study of a magnet design to capture the produced muon beam.
- Following the findings from numerical simulations, the field drops from 20 T to 2 T within a short 6 m taper length.
- Previous discrepancies in modeling the chicane/absorber system are now understood.
- Chicane is now optimized and integrated into the FE
- Reduced substantially the number of Buncher & Phase Rotator rf frequencies.
Target & Capture system

• Proton Driver:
 • 6.75 GeV (kinetic energy) proton with 3 ns pulse
 • 1 MW initial beam power
 • NF: 50 Hz rep rate, MC: 15 Hz rep rate

• Target Concept:
 • Graphite target
 • Inside 20 T magnet
 • Tilted in magnetic axis
 • Proton beam dump via graphite rod downstream of the target

• Details: K.T. McDonald Talk on May 30th, 8:30 am
Target System Optimizations

- Optimum C target: len. = 80 cm, rad = 8 mm, tilt = 65 mrad
- Optimum Graphite beam dump: len. = 120 cm, rad = 24 cm to intercept most of the proton beam
- Details: X. Ding, Talk on May 29th, 1:55 pm
Optimizations of Muon Capture

- Global optimization for:
 - Peak target field, end field, length of field taper

- Results showed:
 - Shorter taper leads to higher muon yield (~6 m)
 - Favorable to increase the baseline end field (2.0 T)
 - Higher target peak field improves performance (20 T)

- Details: H. Sayed Talk on May 29th, 11:10 am
Magnet design for short taper

- Magnet design for 5-7 m short taper delivered
- Tapers from 15T – 20 T to 1.5-3 T magnetic field
- Implemented to the new Front-End
Front-End Chicane

- High energy particles could activate the entire FE channel
- Bent solenoid chicane induces vertical dispersion in beam
 - High-Momentum particles scrape
 - Single chicane for both muon signs
- Proton absorber to remove low momentum protons
Earlier simulations showed 15% discrepancy between ICOOL & G4BL.
It was thought that this was due to the different field model.
Later simulations showed that this was due to the Be model in ICOOL.
Chicane Optimization I (Berg)

• Details: J.S. Berg Talk on May 30th, 8:55 am
• Significant tradeoff between muon transmission and downstream proton power
Buncher & Rotator parameters

• Re-designed to match to a 325 MHz cooler

• Buncher (21 m long)
 • 490 to 365.0 MHz (56 freq.)
 • RF voltage: 0.3 to 15.0 MV/m
 • 2.0 T magnetic field

• Rotator (24 m long)
 • 364.0 to 326.0 MV/m (64 freq.)
 • RF voltage: 20 MV/m
 • 2.0 T magnetic field

• Details: D. Neuffer, Talk on Th. May 29th, 2:20 pm

Baseline has 120 different frequencies!
Discretization of rf frequencies

- Our goal is to reduce the number of frequencies.
- Going from 120 to 30 frequencies -> 8% loss

Buncher rf parameters

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Gradient (MV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>493.71</td>
<td>0.30</td>
</tr>
<tr>
<td>482.21</td>
<td>1.24</td>
</tr>
<tr>
<td>470.27</td>
<td>1.95</td>
</tr>
<tr>
<td>458.40</td>
<td>3.38</td>
</tr>
<tr>
<td>448.07</td>
<td>4.45</td>
</tr>
<tr>
<td>437.73</td>
<td>5.52</td>
</tr>
<tr>
<td>427.86</td>
<td>6.60</td>
</tr>
<tr>
<td>418.43</td>
<td>7.67</td>
</tr>
<tr>
<td>409.41</td>
<td>8.74</td>
</tr>
<tr>
<td>400.76</td>
<td>9.81</td>
</tr>
<tr>
<td>392.48</td>
<td>10.88</td>
</tr>
<tr>
<td>384.53</td>
<td>11.95</td>
</tr>
<tr>
<td>376.89</td>
<td>13.02</td>
</tr>
<tr>
<td>369.55</td>
<td>14.30</td>
</tr>
</tbody>
</table>

Rotator rf parameters

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Gradient (MV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363.86</td>
<td>20.0</td>
</tr>
<tr>
<td>357.57</td>
<td>20.0</td>
</tr>
<tr>
<td>352.20</td>
<td>20.0</td>
</tr>
<tr>
<td>347.59</td>
<td>20.0</td>
</tr>
<tr>
<td>343.65</td>
<td>20.0</td>
</tr>
<tr>
<td>340.27</td>
<td>20.0</td>
</tr>
<tr>
<td>337.39</td>
<td>20.0</td>
</tr>
<tr>
<td>334.95</td>
<td>20.0</td>
</tr>
<tr>
<td>332.88</td>
<td>20.0</td>
</tr>
<tr>
<td>331.16</td>
<td>20.0</td>
</tr>
<tr>
<td>329.75</td>
<td>20.0</td>
</tr>
<tr>
<td>328.62</td>
<td>20.0</td>
</tr>
<tr>
<td>327.73</td>
<td>20.0</td>
</tr>
<tr>
<td>327.08</td>
<td>20.0</td>
</tr>
<tr>
<td>326.65</td>
<td>20.0</td>
</tr>
<tr>
<td>326.41</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Graph showing the comparison of different rf-pair configurations.
Six Contributions to IPAC

- Target Concept:
 - Poster: TUPRI008

- Muon Capture Magnet Concept:
 - Poster: THPRI087

- Target Optimizations:
 - Poster: THPRI089

- Muon Capture Optimizations:
 - Poster: MOPRI007

- Chicane Integration in the FE:
 - Poster: TUPME022

- Buncher & Phase-Rotator Discretization:
 - Poster: TUPME023
• We are on good standing based on the IBS schedule:
 • A conceptual design for target, capture solenoid and beam dump has been delivered.
 • On our way to deliver a concept for chicane, buncher & rotator
 • Still a lot of work to do (next slide).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FE-Cool Interface Parameters</td>
<td>10/1/2014</td>
<td></td>
<td></td>
<td>7/22/2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18
Future Steps

• Specify buncher and phase-rotator parameters for the new chicane & absorber settings [Person A, Person B]
 • Evaluate performance
 • Energy deposition downstream of the chicane
 • Detailed MARS simulation for specific areas
• Repeat the process for different B-fields [Person A, Person B]
• Energy deposition chicane/ target [Person C, Person D]:
 • Detailed studies in the chicane & target for different target configurations
• Finalize buncher & phase-rotator [Either A, B, C. D]
 • Windows and realistic coils