IDS120j WITHOUT RESISTIVE MAGNETS

MODIFYING Hg MODULE (NEW SH#1 REGION)

Nicholas Souchlas, PBL (12/13/2012)
IDS120j GEOMETRY, NO RESISTIVE MAGNETS: WITH 20 cm GAPS BETWEEN CRYOSTATS

MODIFYING Hg MODULE TO SIMULATE VAN GRAVE'S DESIGN.
A NEW UNIFIED SHIELDING VOLUME (SH#1 + SH#4) WITHIN CRYO#1 WAS DECIDED
DURING 11 / 15 / 2012 TARGET MEETING AND AN EXTENSION OF THE Hg POOL
UPSTREAM UP TO z = -100 cm.
NEW SHIELDING CONFIGURATION ADDS ~8 cm THICK CYLIDRICAL VOLUME OF
SHIELDING AT R ~ 50 cm.
RESULTS FROM SIMULATIONS WITH MODIFIED Hg POOL AND SH#1 REGION
(SC#1+2, SC#4 SEGMENTATION STUDIES AND DISTRIBUTION OF DP IN STATION).

>SIMULATIONS CODE: mars1512 (USING MCNP CROSS SECTION LIBRARIES)

>NEUTRON ENERGY CUTOFF: 10^{-11} MeV

>SHIELDING: 60% W + 40% He (WITH STST VESSELS)

>PROTON BEAM POWER: 4 MW

>PROTON ENERGY: E = 8 GeV

>PROTON BEAM PROFILE: GAUSSIAN, \(\sigma_x = \sigma_y = 0.12 \) cm

>EVENTS IN SIMULATIONS: \(N_p = 500,000 \) (OR 4x500,000 FOR SC#1+2)
THE NEW Hg POOL MODULE WILL DISPLACE A LARGE VOLUME OF SHIELDING MATERIAL IN SH#1 AND THE FIRST HALF OF SH#1A (TOP VOLUME REGION), AS WELL AS FROM THE BOTTOM VOLUME BEFORE THE Hg POOL (UPSTREAM) WHERE IT IS MOSTLY NEEDED FOR THE PROTECTION OF SC#1 – SC#4 [INNER Hg MODULE WAS DECIDED TO BE EXTENDED UPSTREAM ALL THE WAY AT THE BEGINNING OF THE SC#1]. UPDATED CONFIGURATION UNIFIES SH#1 AND SH#4 VOLUMES AND EXTENDS Hg POOL UPSTREAM UP TO z = -100 cm.
IDS120j: WITHOUT RESISTIVE MAGNETS. DETAILS OF THE DOUBLE STST Hg POOL VESSEL (LEFT, MIDDLE) AND THE DOUBLE Be WINDOW (RIGHT). [20 cm GAPS]

2 cm THICK STST INNER Hg POOL VESSEL WITH 1 cm He GAP FOR COOLING.

TWO 0.5 cm THICK Be WINDOWS AT THE END OF CRYO#1 WITH 0.5 cm He GAP BETWEEN THEM FOR COOLING.

10 cm THICK STST RIGHT / LEFT FLANGE OF SHVS#4, SHVS#1 / SHVS#2 WITH 20 cm GAP BETWEEN THEM.
The design requires a 2.5 cm gap between SH#1 inner vessel and Hg pool module outer vessel. An even larger space appears to be between inner and outer vessel of the Hg pool module for the flow of He gas for cooling the pool. The radius of the upper half semicircular section of inner Hg pool vessel will be 26.5 cm, much larger than the beam pipe aperture at the end of Cryo#1 (~17.7 cm).
EVERYTHING HAS BEEN PARAMETRIZED FOR FUTURE CONVENIENCE. THE HEIGHTS OF THE END POINTS OF THE STRAIGHT SECTIONS ARE HL = -26 cm AND HU = 15 cm. THE FREE Hg POOL SURFACE IS AT y = -15 cm. THE RADIUS OF THE LOWER PART OF THE INNER VESSEL OF THE Hg MODULE IS NOW SMALLER THAN BEFORE: FROM \(\sim 45 \text{ cm} \) ----> \(\sim 39 \text{ cm} \). THE REST OF THE SPACE BETWEEN SHVS#1 INNER AND OUTER TUBE (AT R \(\sim 115 \text{ cm} \)) IS FILLED WITH SHIELDING.
IDS120j: *yz (LEFT) AND yx AT z = 10 cm (RIGHT) CROSS SECTION WITH DETAILS OF THE NEW Hg MODULE AND THE LOWER HALF OF THE UPSTREAM REGION.*

According to Van’s Design the volume from the beginning of CRYO#1 (z ~ -240 cm) to the beginning of the Hg pool (z ~ -100 cm) and from y ~ -15 cm to the bottom of the Hg module inner vessel (R ~ 39 cm) will be empty to accommodate the pipes and other components of the Hg pool module.

Some improvement in shielding is achieved by unifying SH#1 and SH#4. There will be significant increase in the shielding mass (> 200 tons) to be contained in the new vessel ==> greater asymmetry in the weight distribution. He cooling of such a large volume (> 22 m³) of shielding...
IDS120j: yz CROSS SECTION FOR THE AZIMUTHALLY AVERAGE TDPD WITH THE OLD Hg POOL VESSEL (LEFT) AND THE NEW ONE (RIGHT) [P12 POINT]. [TDPD = TOTAL DEPOSITED POWER DENSITY]

IDS120j: yz (LEFT) AND yx CROSS SECTION WITH DETAILS OF THE SC#1+2 SEGMENTATION.

120.0 < r < 150.0 cm dr = 10.0 cm N_r = 3 bins
-55.0 < z < 185.0 cm dz = 20.0 cm N_z = 12 bins
0.0 < \phi < 360.0 deg. d\phi = 30 deg. N_\phi = 12 bins

N_{tot} = 432 "pieces"

ONLY THE AREA WITH HIGHEST AVERAGE AZIMUTHAL TDPD (DETERMINED FROM MARS PLOTS, PAGE #8) WAS STUDIED.
PEAK TDPD < 0.08 mW / g. MOST OF THE DP IS BETWEEN ~ -40 < z < 40 cm AND IN THE LOWER HALF OF SC#1+2, TOWARDS THE +x DIRECTION. THIS IS THE RESULT OF REPLACING SHIELDING MATERIAL AT THE BOTTOM PART OF THE Hg MODULE WITH LIQUID Hg. THE NEGATIVE IMPACT OF THE NEW Hg MODULE IN SH#1 IS GREATERLY MITIGATED BY THE INTRODUCTION OF ~ 8 cm THICK CYLINDRICAL SHIELDING VOLUME AT R ~ 50 cm WHEN SH#1 AND SH#4 ARE UNIFIED INTO ONE VOLUME. A LOT OF DP IS ALSO ALONG THE $\varphi = 165^\circ$ ($x < 0, y > 0$).

SEGMENTED TDP [= 0.67] + UNSEGMENTED VOLUME [= 0.294] = 0.96 kW VS. SC#1+2 UNSEGMENTED[= 0.90 kW]
PEAK TDPD < 0.06 mW / g. STILL QUITE HIGH FOR THESE r = 135 cm RADIUS PIECES. AS BEFORE MOST OF THE DP IS BETWEEN ~ -40 < z < 40 cm CLOSE TO THE x AXIS IN GENERAL.
PEAK TDPD < 0.04 mW / g FOR THE r = 145 cm RADIUS PIECES. IN GENERAL WE HAVE MORE UNIFORMITY NOW IN THE AZIMUTHAL TDPD DISTRIBUTION. ONE CAN COMPARE THE LAST THREE PLOTS WITH THE ONES IN 9 / 20 / 2012 PRESENTATION WITH RESULTS FROM THE OLD Hg MODULE.
IDS120j: \(\text{yz (LEFT)} \) AND \(\text{yx (} z = 471 \text{ cm}) \) CROSS SECTION WITH DETAILS OF THE SC#4 SEGMENTATION.

\[
\begin{align*}
90.0 < r < 147.61 \text{ cm} & \quad \text{dr} = 14.40 \text{ cm} & \quad N_r = 4 \text{ bins} \\
459.0 < z < 480.31 \text{ cm} & \quad \text{dz} = 21.31 \text{ cm} & \quad N_z = 1 \text{ bins} \\
0.0 < \phi < 360.0 \text{ deg.} & \quad \text{d\phi} = 30 \text{ deg.} & \quad N_{\phi} = 12 \text{ bins} \\
\text{N}_{\text{tot}} = 48 \text{ "pieces"}
\end{align*}
\]
PEAK TDPD < 0.045 mW/g. HIGH TDPD PEAK VALUES ARE OBSERVED FOR "PIECES" AT THREE DIFFERENT RADII BUT AT VERY DIFFERENT ANGLES. ONE CAN ALSO COMPARE THIS CASE WITH THE AZIMUTHAL TDPD DISTRIBUTION FOR THE IDS120j WITH THE OLD Hg MODULE (5/1/2012 TARGET MEETING PRESENTATION, PAGE #11)
SEGMENTED SC#4 TDP = 0.149 kW VS. UNSEGMENTED SC#4 TDP = 0.144 kW
A) THE PEAK DPD IN SC#1+2 IS ~ 0.077 mW / g AT (r, z, phi) = (125 cm, 15 cm, 315 deg) IN SC#1 LOWER HALF OF THE COIL (y < 0, x > 0) CLOSE TO THE -y AXIS.

B) 0.67 kW OF DEPOSITED POWER IN THE SC#1+2 JUST IN THE SEGMENTED VOLUME. ABOUT 0.96 kW IN BOTH COILS SC#1+2 [BORDERLINE BAD NEWS]. DEPOSITED POWER IN ALL 12 SCs ~ 1.4 kW [BAD NEWS]. DEPOSITED POWER IN SC#4 ~ 0.15 kW ==> PEAK TDPD ~ 0.043 mW / g AT (r, z, phi) = (126.01 cm, 469.66 cm, 15 deg)

C) INNER TUBE OF Hg MODULE RECEIVES ~ 275 kW WHILE OUTER TUBE ~ 166 kW [BOTH 1 cm THICK STST BELL LIKE SHAPE]. INNER TUBE OF SHVS#1 [2 cm THICK STST BELL LIKE SHAPE] WILL GET ~ 165 kW.

D) DEPOSITED POWER IN SH#1 : ~ 577 kW
DEPOSITED POWER IN SH#2 : ~ 96 kW
DEPOSITED POWER IN SH#3 : ~ 11 kW
DEPOSITED POWER IN SH#4 : ~ 5 kW

E) DEPOSITED POWER IN SHVS#1 : ~ 3 kW
DEPOSITED POWER IN SHVS#2 : ~ 41 kW
DEPOSITED POWER IN SHVS#3 : ~ 4 kW
DEPOSITED POWER IN SHVS#5 : ~ 0.5 kW

F) DEPOSITED POWER IN Hg JET : ~ 418 kW
DEPOSITED POWER IN Hg POOL : ~ 1212 kW

G) DEPOSITED POWER IN Be WINDOW : ~ 10 kW
DEPOSITED POWER IN BP#2 : ~ 109 kW
DEPOSITED POWER IN BP#3 : ~ 20 kW