Energy deposition for intense muon sources (chicane + the rest of the front end)

Pavel Snopok

Illinois Institute of Technology and Fermilab

May 19, 2015
Outline

- Introduction
- History
- Current MARS simulations
 - based on the hybrid channel ICOOL lattice
- Summary
• In high-intensity sources muons are produced by firing high energy p onto a target to produce π.
• π decay to μ which are captured and accelerated.
• Significant background from p and \bar{e}, which may result in
 – heat deposition on superconducting materials;
 – activation of the machine preventing manual handling.
Introduction, contd.

- Need a secondary particle handling system for a megawatt class solid C target
 - solenoidal chicane
 - followed by a proton absorber.

- Challenges of optimization and integration of the system with the rest of the muon front end.

- Main study tool – MARS, some analysis and validation by using ICOOL and G4beamline.

- Use the same technique to study the buncher/phase-rotator/cooler for the hybrid channel.
History: MARS simulations

- ROOT-based geometry
- 12.5° single bend, $Z=0$ corresponds to 19 m downstream of the target
 - consistent with RDR (IDS-NF).
- W density reduced to 60% to take into account packing fraction for beads.
DPD peaks at 15.8 mW/g, that translates into 42.6 kW/m for Cu coils or 33.3 kW/m for SC coils.
Uniform 35 cm shielding

Empty channel

PD total, mW/g
Overall DPD per coil/segment

Segmented coil analysis, total DPD, mW/g
Average DPD per coil, mW/g

In both cases red line corresponds to 0.1 mW/g SC limit
Ongoing MARS simulations

• New target parameters:
 – 8 GeV => 6.75 GeV
 – 4 MW => 1 MW
 – 3.125e15 protons/sec => 0.925e15 protons/sec
 – new particle distribution

• New ICOOL lattice file
 – hybrid channel

• Looking downstream of the chicane
 – buncher
 – phase rotator
 – matcher/cooler
MARS RF Challenge

- Stationary magnetic fields are straightforward…
- Time-dependent electric field in the RF cavities is not.
 - Ended up using a combination of the two user routines in MARS m1514.f intended for other purposes:
 - MFILL = meant for producing data for histograms, knows when a region boundary is crossed.
 - KILLPTCL = meant for killing particles under certain conditions, here one can change the energy/momentum of the particle
 - RF is a kick approximation (at the center of the cavity).
- Use MARS extended geometry, and while it is sufficient, ROOT geometry would be much more convenient given the length and regularity of the structure.
MARS RF, first results

- A few tracks running through buncher/rotator/cooler.
- Magnetic field is a field map imported from G4beamline.
- Tracks lose energy in absorbers and gain energy when they cross the center of a cavity.
Other codes

- Once MARS lattice is up and running, the plan is to compare results with G4beamline/ICOOL energy loss calculations.
- Back in 2010 I did a comparison of the two codes for IDR:
Summary

• Buncher/rotator/cooler are in MARS now.
 – More input on a more precise geometry for coils and cavities is appreciated.

• Kick approximation is used for RF cavities at the moment…
 – “workaround” style, something more straightforward and permanent would be good;
 – information on phasing is taken directly from ICOOL, no reference particle(s) tracking in MARS.

• MARS is the main tool, although G4beamline and ICOOL are also used for some analyses, could be used for validation.
Thank you!