Energy deposition for intense muon sources (chicane + the rest of the front end)

Pavel Snopok
Illinois Institute of Technology
and
Fermilab
December 4, 2014
Outline

• Introduction
• History
• Current MARS simulations
 – new data files for solid target
• Using other codes (ICOOL and G4beamline)
• Summary
Introduction

• In high-intensity sources muons are produced by firing high energy p onto a target to produce π.
• π decay to μ which are captured and accelerated.
• Significant background from p and \bar{e}, which may result in
 – heat deposition on superconducting materials;
 – activation of the machine preventing manual handling.
Introduction, cont'd.

- Need a secondary particle handling system for a megawatt class solid C target
 - solenoidal chicane
 - followed by a proton absorber.
- Challenges of optimization and integration of the system with the rest of the muon front end.
- Main study tool – MARS, some analysis and validation by using ICOOL and G4beamline.
- Start with the chicane, use the same technique downstream to study the buncher and phase-rotator sections.
History: MARS simulations

- ROOT-based geometry
- 12.5° single bend, Z=0 corresponds to 19 m downstream of the target
 - consistent with RDR (IDS-NF).
- W density reduced to 60% to take into account packing fraction for beads.
DPD peaks at 15.8 mW/g, that translates into 42.6 kW/m for Cu coils or 33.3 kW/m for SC coils.
Uniform 35 cm shielding

Empty channel

PD total, mW/g
Non-uniform 30 and 40 cm shielding

Empty channel

PD total, mW/g
Overall DPD per coil/segment

Segmented coil analysis, total DPD, mW/g
Average DPD per coil, mW/g

In both cases red line corresponds to 0.1 mW/g SC limit
Current MARS simulations

• New target parameters:
 – 8 GeV => 6.75 GeV
 – 4 MW => 1 MW
 – 3.125×10^{15} protons/sec => 0.925×10^{15} protons/sec
 – new particle distribution
 – need to re-run MARS

• The hope is that the new parameters help reduce the amount of shielding required
New results

Muon flux, top view
Muon flux, side view
New results 2

Proton flux, top view

Proton flux, side view
New results 3

Deposited power density, mW/g,

- top view

Deposited power density, mW/g,

- side view
New results 4

Deposited power density, mW/g
segmented coil analysis

Deposited power density, mW/g
averaged
Other codes

- Can G4beamline or ICOOL be used for energy loss/deposition calculations?
- Back in 2010 I did a comparison of the two codes for IDR:
Summary

• Simulations of the new 1 MW graphite target are underway, first results presented.
 – power density > 0.1 mW/g only in a handful of central coils, very low everywhere else;
 – definitely do not need 35 cm of tungsten.

• Action item: implement a more sophisticated geometry (elliptical cross-section following the profile of the beam).
 – this will allow to significantly reduce the amount of W used for shielding.

• MARS is the main tool, although G4beamline and ICOOL can also be used for some analyses.
Thank you!