MUON TARGET STUDIES: TAPERED CAPTURE SOLENOID

HISHAM KAMAL SAYED
Physics Department
BROOKHAVEN NATIONAL LABORATORY

Sept. 25, 2012
OVERVIEW

- Target layout
- Current baseline parameters
- Solenoid Taper field calculations
- MARS simulation setup
- Tracking through FE with ICOOL
- Muon count
- Transverse position & Momentum distribution
- Conclusion
- Production of $10^{14} \mu/s$ from $10^{15} p/s \approx 4$ MW proton beam
- Low-energy π's collected from side of long, thin cylindrical target
- Solenoid coils can be some distance from proton beam.
 - ≥ 10-year life against radiation damage at 4 MW.
- Proton beam readily tilted with respect to magnetic axis.
 - \Rightarrow Beam dump (mercury pool) out of the way of secondary π's and μ's.
- Shielding of the superconducting magnets from radiation is a major issue.
 - Magnet stored energy ~ 3 GJ

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).
TARGET PARTICLE PRODUCTION WITH 15 T PEAK SOLENOID FIELD

- Particle-capture requirement ($P_t \leq 0.225$ GeV/c)
 - $B \times r = 20 \times 7.5 \text{ cm} = 150 \text{ T-cm}$
 - $B \times r = 15 \times 10 \text{ cm} = 150 \text{ T-cm}$
- Fixed-flux requirement (Aperture requirement)
 - $B \times r^2 = 20 \times 7.5^2 = 1125 \text{ T-cm}^2$
 - $B \times r^2 = 15 \times 10^2 = 1500 \text{ T-cm}^2$
- MARS simulations with 15-T peak field & new aperture settings (taper radius $r = 30 \text{ cm}$ at all z)

![Diagram with labels: $R_{\text{ini}} = 7.5 \text{ cm}$, $B_i = 20 \text{ T}$, $r_f = 30 \text{ cm}$](image)

Particle loss due to scrapping with beam pipe!
CURRENT TARGET OPTIMIZED PARAMETERS

(X. Ding et al.)

➤ Hg Target
 ➤ $\theta_{\text{Target}} = 0.137$ rad
 ➤ $R_{\text{Target}} = 0.404$ cm

➤ Proton Beam
 ➤ $E = 8$ GeV
 ➤ $\theta_{\text{Beam}} = 0.117$ rad
 ➤ $\sigma_x = \sigma_y = 0.1212$ cm (Gaussian Distribution)

➤ Solenoid Field
 ➤ IDS120h \rightarrow 20 T peak field at target position ($Z = 0$)
 ➤ Aperture at Target $R = 7.5$ cm - End aperture $R = 30$ cm
 ➤ Fixed Field $Z = 1862.0 \rightarrow B_z = 1.5$ T

➤ Production: Muons within energy KE cut 40-180 MeV
 ➤ 3.27×10^4 ($N_{\text{init}} = 10^5$)
Analytic Form for Tapered Solenoid

Inverse-Cubic Taper

\[
B_z(0, z_i < z < z_f) = \frac{B_1}{[1 + a_1(z - z_1) + a_2(z - z_1)^2 + a_3(z - z_1)^3]^p}
\]

Field at R=0

\[
a_1 = -\frac{B_1}{pB_1} \quad \quad a_2 = 3\left(\frac{B_1}{B_2}\right)^{\frac{1}{p} - 1} - \frac{2a_1}{z_2 - z_1}
\]

\[
a_3 = -2\left(\frac{B_1}{B_2}\right)^{\frac{1}{p} - 1} + \frac{a_1}{(z_2 - z_1)^2}
\]

Off-axis field approximation

\[
B_z(r, z) = \sum_{n} (-1)^n \frac{a_0^{(2n)}(z)}{(n!)^2} \frac{r}{2}^{2n}
\]

\[
B_r(r, z) = \sum_{n} (-1)^{n+1} \frac{a_0^{(2n+1)}(z)}{(n+1)(n!)^2} \frac{r}{2}^{2n+1}
\]

\[
a_0^{(n)} = \frac{d^n a_0}{dz^n} = \frac{d^n B_z(0, z)}{dz^n}
\]
- Beam Pipe with constant $R=30 \text{ cm}$ (eliminate particle loss due to scrapping)
- Beam Pipe material changed to balckhole to speed calculations
- Added subroutine to m1510.f (FIELD K. McDonald) to calculate the field using inverse cubic equations
- $N_{\text{proton}}=5 \times 10^5$
- Store particles information at $z=0$
- Select $(\mu^+ - k^+ - \pi^+)$

$B_z(z=0,r=0) = 15 \text{ T}$
1- Taper solenoid field with different settings

- $B_z(r=0)$ 20 → 1.5 T Taper Length 8→43 m
- $B_z(r=0)$ 15 → 1.5 T Taper Length 8→43 m
- $B_z(r=0)$ 15 → 1.8 T Taper Length 8→43 m
- $B_z(r=0)$ 15 → 2.0 T Taper Length 8→43 m

2- ICOOL applied aperture for decay region $R_{aperture}= 0.4$ m & 0.3 m to end

3- Good particles are those who satisfy the following conditions/cuts
 1- Survived the phase rotator and cooling sections
 2- Fall within required acceleration acceptance cuts
 - $0.1 < P_z < 0.3$ GeV
 - Transverse cut $R < 0.3$ m
 - Longitudinal cut 0.15 m
MARS SIMULATION RESULTS

Tapered field using inverse-cubic field ($P = 1$)

Mesons count at $z=50$ m with K.E. 40-180 MeV

Present baseline:
$B_i = 20$ T, $B_f = 1.5$ T, $z_{end} = 15$ m.

%6 increase $zend$ 8-40 m
%8 decrease B_i 20\rightarrow15 T
Muons within required acceleration acceptance cuts after cooling section
- $0.1 < P_z < 0.3 \text{ GeV}$
- Transverse cut $R < 0.3 \text{ m}$
- Longitudinal cut 0.15 m

Solenoid Field along z-axis

Shorter taper better survive buncher
- phase rotator & cooling
TRANSMISSION THROUGH FRONT END

Pz & Σ cut

Trans, Pz, & Σ cut

- Aperture: 0.4 → 0.3 m
- µons (no transvers cut n0)
- µons (w transvers cut n1)
1- Taper solenoid field: 20 → 1.5 T over 15 m
2- ICOOL applied aperture for decay region $R_{aperture} = 0.4$ m & 0.3 afterwords
3- Good particles are those who satisfy the following conditions/cuts
 1- Survived the phase rotator and cooling sections
 2- Fall within required acceleration acceptance cuts
 - $0.1 < p_z < 0.3$ GeV
 - Transverse cut $R < 0.3$ m
 - Longitudinal cut 0.15 m
DISTRIBUTIONS OF PARTICLES SURVIVED THE FRONT END AND ACCELERATION CUTS

Particle distribution Taper Length =15 m
CONCLUSION

- Mesons count at 50 m increases with longer taper
- Bz=15 \rightarrow 1.8T produces as much mesons counted at 50 m as Bz=20 \rightarrow 1.5T
- 15 T peak field case has ~ 7% less yield at end of cooling though it produces about the same number of muons at the target.
- No clear mismatch in the lattice that shows huge particle loss
- Particle radii extends from 0.1 at z=0 to 0.3 m at z=15 m
- Particles transverse momenta extends from 0.3 at z=0 to 0.1 m at z=15 m

<table>
<thead>
<tr>
<th>Taper Length</th>
<th>End of Decay Channel z=50 m No cuts</th>
<th>End of FE z=265 m Eclac acceleration acceptance cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Long</td>
<td></td>
<td>Better</td>
</tr>
</tbody>
</table>