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Talk outline

• FronTier-MHD code: theory and implementation.
• Numerical simulation of conducting liquid jets in magnetic fields and the 
muon collider target
• Modeling of the equation of state with phase transition (Riemann     
problem for such EOS)
• Numerical simulation of the mercury jet interacting with proton pulses.
• Plans for future research.
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Schematic of the Muon Collider Target
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3D FronTier Structures

Interfaces model different types of discontinuities in a medium such as shock 
waves in gas dynamics, boundaries between fluid-gas states, different fluids or 
their phases in fluid dynamics, component boundaries in solid dynamics etc.

Front tracking represents interfaces as lower 
dimensional meshes moving through a volume 
filling grid. The traditional volume filling finite 
difference grid supports smooth solutions 
located in the region between interfaces and 
the lower dimensional grid or interface defines 
the location of the discontinuity and the jump in 
the solution variables across it. 
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Resolving interface tangling by using the grid based method
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The FronTier code: 
capabilities of the interior solvers

FronTier uses high resolution methods for the interior hyperbolic 
solvers such as Lax-Wendroff, Godunov and MUSCL and the following 
Riemann solvers:
• Exact Riemann solver
• Colella-Glaz approximate Riemann solver
• Linear US/UP fit (Dukowicz) Riemann solver
• Gamma law fit

FronTier uses realistic models for the equation of state:
• Polytropic Equation of State
• Stiffened Polytropic Equation of State
• Gruneisen Equation of State
• SESAME Tabular Equation of State
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The system of equation of compressible
magnetohydrodynamics
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The interface condition

Interface conditions for the normal and 
tangential components of the magnetic field 
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Approximations:
I. General case

General approach: the magnetic field is not constant in time. 

Time scales: acoustic waves time scale     = 7 microseconds;
magnetic diffusion time scale = 33 microseconds
Alfven waves time scale         = 70 microseconds
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Approximations:
II. Constant in time magnetic field

The magnetic field is constant in time. The distribution of currents can be 
found by solving Poisson’s equation:
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Magnetohydrodynamics of Multi Fluid Systems: 
Numerical Approach

• The system of MHD equations contains the hyperbolic subsystem (the mass, 
momentum and energy conservation equations) and the parabolic (the 
magnetic field evolution equation) or elliptic (Poisson’s equation for the current 
density distribution) subsystems.

• The hyperbolic subsystem is solved on a finite difference grid in both 
domains separated by the free surface  using FronTier's interface tracking 
numerical techniques. The evolution of the free fluid surface is obtained 
through the solution of the Riemann problem for compressible fluids.

• The parabolic subsystem or elliptic subsystems is solved using a vector finite 
elements method based on Whitney elements. The grid is rebuilt at every time 
step and conformed to the evolving interface. 
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Finite element mesh generation with interface 
constraints: Point shift method.

1. Distortion of appropriate mesh blocks into irregular, convex hexahedra 
by shifting appropriate corner nodes to be coincident with the 
triangulated surface.

2. Appropriate redistribution of surface triangles to ensure that surface 
triangles are coplanar either with shifted hexahedra faces or “interior 
diagonal” planes.

3. Tetrahedralization of all (regular and irregular) grid blocks, creating and 
modifying a regularly indexed grid to provide a restricted optimized 
match to a triangulated tracked surface.

Advantages: preserves rectangular index structure.
Disadvantages: not robust (at present) in parallel.
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Finite element mesh generation with interface 
constraints

Triangulated tracked surface and 
tetrahedralized hexahedra conforming to 
the surface. For clarity, only a limited 
number of hexahedra have been displayed.
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Dynamic finite element grid generationDynamic finite element grid generation
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Liquid metal jet in 20 T solenoid
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Liquid metal jet in 20 T solenoid



Brookhaven Science Associates
U.S. Department of Energy

Liquid metal jet in 20 T solenoid
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Liquid metal jet in 20 T solenoid



Brookhaven Science Associates
U.S. Department of Energy

Liquid metal jet in 20 T solenoid
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Schematic of the muon collider magnet system
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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Mercury target in 20 T magnet
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15 Tesla magnetic field
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10 Tesla magnetic field
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Mercury phase diagram
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Equation of state

An EOS is a relation expressing the specific internal energy  E of a material as 
a function of the entropy  S and the specific volume  V:   E(S,V).

The pressure  P and temperature  T are first derivatives of the energy  E :

in accordance with the second law of thermodynamics: TdS=dE+PdV.

The second derivatives of the internal energy are related to the adiabatic 
exponent      , the Gruneisen coefficient  Γ  and the specific heat  g .γ
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SESAME tabular equation of state

The SESAME EOS is a tabular equation of state which gives the 
thermodynamic functions for a large number of materials, including gases, 
metals and minerals, in a computerized database.

The SESAME EOS includes the following tables:
201 Tables. The 201 tables contains 5 floats which are the atomic number, 
atomic weight, density, pressure and internal energy at the normal conditions. 

301 Tables. The 301 tables is a database for the pressure, internal energy and, 
in some cases, the free energy as functions of the temperature and density. 

401 Tables. The 401 tables contain data for the thermodynamic functions at  
the liquid/vapor phase transition.  
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Thermodynamic properties of mercury,
ANEOS data 
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Thermodynamic properties of mercury,
ANEOS data
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t = 27 mksec
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t = 78 mksec
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t = 120 mksec
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