Non-Linear Solenoidal Optics

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory
Emittance Growth and Beam Loss

- I get quite a bit of beam loss in my cooling channel
 - Significant even in the absence of absorbers
 - Exacerbated by introduction of RF cavities
 - Nb “Bunching mode” here => 17.5 MV/m running at 0° phase
 - Want to look at optical losses in absence of absorber material
 - Rather larger bucket than in normal running
 - Expect these optics-induced losses to be worse in normal running
- Try using mapping technique to study optical heating
 - Expand \((x,y,t;px,py,E)\) as a mapping across a cooling cell
 - Ignore material effects
- Focus in this talk on mapping techniques
 - Not so much about lattice development here
First consider algorithms mapping 1D space
- e.g. $x_{in} \rightarrow x_{out}$ as a 4th order polynomial

Consider Linear Least Squares fit of input particle data to output particle data after tracking through G4MICE
Can improve the fit by numerically differentiating at $x=0$

- Force the polynomial 1st derivative here
First consider algorithms mapping 1D space, e.g. x_{in} to x_{out}.

- **LLS**
- **LLS with Differential**
- **LLS with Chi2 Cut**
- **LLS with Chi2 Cut and Differential**

Stability vs chi2 cut

Alternatively try applying a cut on particles with large amplitudes.

- Reduce the size of the amplitude acceptance until difference between fit and true data is small.
First consider algorithms mapping 1D space, e.g. x_{in} to x_{out}.

- Consider LLS
- LLS with Differential
- LLS with Chi2 Cut
- LLS with Chi2 Cut and Differential

Stability vs chi2 cut

Now force 1st derivative and take chi2 cut
- Convergence as a function of chi2 limit
 - Seems to converge reasonably well, better w/o numerical derivative
 - Prefer not to force the 1st order differential
 - Probably because error in numerical derivative
Longitudinal phase space

- Consider a “real” application - longitudinal phase space
 - Fire shells of particles at various amplitude
 - Look at (mapping - tracking) as a function of distance from the reference trajectory
 - In general, higher order polynomials => better fit
 - At some point adding extra terms doesn't really help
 - Using the trick of applying fit only in a region where the polynomial matches tracking results
Constrained polynomial

- Try a slightly different algorithm
 - As above, but instead of fitting to an nth order polynomial, I:
 - Fit to a 1st order polynomial
 - Fit to a second order polynomial forcing first order terms to be as above
 - Repeat up to nth order
 - Fit looks a bit better...
 - Equivalent to “forcing differential” in 1D example
 - But can include higher polynomial terms
Transverse phase space

- Can extend to 4D \((x,y,px,py)\)
 - Main contribution from 3rd order polynomial terms
 - Fits with beam optics
 - In theory expect 3rd order spherical aberrations
 - Slight improvement from 4th order terms
 - No real contribution beyond 4th order
 - Presumably algorithm starts running out of steam beyond 4th order

- No improvement from constraining at lower order
Non-Linear Terms vs End Field

- These non-linear terms are quite dependent on length of solenoid fringe field.
- For very short fringe fields 3rd order terms become large:
 - \(\frac{d^2 B_z}{dz^2} \) becomes large
 - e.g. consider tanh model for \(B_z(r=0) \)
 - \(B_z = \tanh[(z-z_0)/\lambda] + \tanh[(z-z_0)/\lambda] \)
Is this an effect from tracking accuracy?

- Estimate algorithmic stability by looking at coefficient variance after calculation with several sets of particles
- Reasonably stable so long as tracking is ok
 - error on polynomial coefficient ~ 1%
- (Can do better with better set of particles - this is a Gaussian beam)
6D Mapping

- Can extend to 6D \((t,E,x,y,px,py)\)
 - In 6D need to constrain at lower order
 - Non-linear terms at 2nd order
 - 3rd order contribution doesn't make much difference
 - Algorithm running out of steam even at 3rd order...
E.g. Effect of Momentum

$\langle B_z \rangle = 1.8 \text{ T}$

$\langle B_z \rangle = 0.9 \text{ T}$

Beta at Absorber

Transverse acceptance

$\langle B_z \rangle = 1.8 \text{ T}$
E.g. Effect of Momentum

- \(\langle B_z \rangle = 1.8 \, \text{T} \)
- \(\langle B_z \rangle = 0.9 \, \text{T} \)
Conclusion

- Focus on algorithms here
 - Interesting algorithms developed
 - Enable study of non-linear terms in a tracking code
- Try to use them to develop some lattices...