Baseline Update

Chris Rogers,
Accelerator Science and Technology Centre (ASTeC),
Rutherford Appleton Laboratory
New Baseline - aim

- Aim is to define a new baseline for the front end
 - Take forward to RDR
- Elements to include:
 - RDR target design (Kirk)
 - Chicane (Rogers)
 - Proton absorber (Rogers)
 - Modified RF capture for chicane/proton absorber (Neuffer)
 - Modified coils for 1.5 T field region (Stratakis/Grant)
 - 5 cell option ionisation cooling channel (Stratakis)
 - Discretize RF, add Be windows (?Neuffer)
- Would like ICOOL and G4Beamline lattice files
- As a starting point I am taking Dave Neuffer's ICOOL version of chicane/proton absorber/RF capture
 - p99s
- Version controlled lattice files available at:
 - http://bazaar.launchpad.net/~chris-rogers/muon-front-end/trunk/files
 - bzr checkout lp:~chris-rogers/muon-front-end/trunk
So far

- **RDR target design (Kirk)**
 - Old target design still in
 - Need new lattice from target group
 - g4bl finishes target magnets at 30 m (target magnets at 1.5 T for 10 m)
 - Icool finished target magnets at ~ 20 m
 - Seek advice from target group on RDR design

- **Chicane (Rogers)**
 - 12.5 degree chicane implemented in icool starting at ~ 20 m
 - Same in g4bl but starting at ~ 30 m due to different target magnets

- **Proton absorber (Rogers)**
 - 100 mm proton absorber implemented in icool 10 cm after chicane
 - 100 mm proton absorber implemented in g4bl immediately after chicane
So far (cont)

- Modified RF capture for chicane/proton absorber
 - Continuously changing RF frequencies defined in ICOOL
 - no discretisation
 - Use for001 deck to define accelerating phase and length in g4bl
 - See next slides for comments on phase
 - Use icool RFDIAG file to define voltage and z-position in g4bl
 - ICOOL assumes constant 1.5 T field
 - G4BL has FS2A-like coils
 - Need coils for chicane – no bent solenoid model in g4bl

- 5 cell option ionisation cooling channel
 - Not implemented – still use baseline

- Discretize RF, add Be windows (?Neuffer)
 - No implementation in ICOOL or G4BL

- Beam – use Dave Neuffer's beam
 - convert to g4bl BLTrackFile format

- Using revision 6 in the repository (current repository head)
Magnetic Field

![Graph showing magnetic field profiles](image-url)
Magnetic Field – taper + chicane

First g4bl small coil at 25.75 m

Icool chicane

G4bl field match g4bl chicane
Magnetic Field – coil size change

- **Small coil**
 - Inner rad 430 mm
 - Outer rad 530 mm
 - Length 180 mm
 - 16.570 A/mm²

- **Large coil**
 - Inner rad 650 mm
 - Outer rad 750 mm
 - Length 650 mm
 - 13.724 A/mm²

- Large coil needs to be adjusted for engineering

First large coil
66.171 m

Last small coil
65.921 m
Magnetic Field – cooling + match

- ICOOL match uses some “virtual coils”
- Need to redo match for g4bl
Optics – cooling + match

- Quite a bit of emittance growth
 - Could try to improve the match here
RF Capture – Pz

- ICOOL model for rotator
 - REF1 keeps velocity constant
 - Frequency chosen by nbunches parameter and delta time to REF2
 - “phase shift” at 50 degrees?
- G4BL model only one reference particle
 - Try phasing against REF2 with different RF phases
 - Nbunches = 10.045 => REF2 phase = 16.2°
 - Look at resultant beam pz
Cooling – Emittance

- Big emittance blow up in chicane and downstream
 - Presumably lost particles not properly collimated
- Some mismatch going into the cooling
- G4BL seems to cool faster
 - Scraping?
Cooling - Capture Performance

- Usual (ecalc9f 2.09) cuts:
 - $100 \text{ MeV/c} < P_z < 300 \text{ MeV/c}$
 - $A_{\text{trans}} < 30 \text{ mm}$
 - $A_{\text{long}} < 150 \text{ mm}$
- 20 degree phase does best
- 15 degree phase undershoots on momentum and falls out of momentum acceptance
- 25 degree phase overshoots on momentum and fails to cool
Plan

1. Would like to implement G4BL version of chicane/proton absorber
 - Make a “release” of the lattice files
 - Use with ICOOL deck as basis for documentation of the chicane/proton absorber
2. Then redo the 1.5 T magnets following engineering (and Hisham studies if timely)
 - “Release”
3. Then work through the ionisation cooling channel
 - “Release”
4. Implement target when target group tell me what they want
 - “Release” + new beam
 - The first three items are possible to implement before IDS meeting
 - But quite a bit of work – may run out of time
 - New target comes when it comes