Materials Data Requirements For High Power Target Design

E. Noah, C. Kharoua, F. Plewinski, P. Sabbagh
ESS Target Division

4th HPTW
May 2-6, 2011, Malmö
Outline

- ESS Baseline Parameters
- Irradiation environments
- Motivation for engineering design codes
- RCC code description
- Adding material data to code
ESS baseline parameters

Proton beam
- 2.5 GeV proton linac
- 2 mA average beam current
- 1.3 ms pulse length
- 16.67 – 20 Hz rep. frequency

Target options:
- Molten LBE
- Solid Tungsten (or W alloy)
Sweden, Denmark and Norway
50% of construction costs

17 Partners
today
ESS target station sketch (LBE)

Instrument hall

Proton beam line

Main tank

TMR Cell

High bay

Target vault

Hot cell

Activated utilities vault

Materials data requirements for high power target design
E. Noah, 4th HPTW, Malmö, SE, 2-6 May 2011
Irradiation environments

<table>
<thead>
<tr>
<th></th>
<th>dpa</th>
<th>H & He</th>
<th>Temperature</th>
<th>Corrosion</th>
<th>Pulsed</th>
<th>Codes & Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spallation Source</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ADS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fusion</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F.R. (Na)</td>
<td>+</td>
<td>---</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Motivation for design codes

Basic design requirements:
- Safety
- Reliability of components

Motivation for codes and standards:
- Contractual: client/contractor/supplier
- Consistency: tendering/safety authorities
- Efficiency: documents/practices simplification
- Sharing applied practice: tech. transfer/localisation of manufacturing/international exchange.
- Integration of industrial experience.
Safety considerations

- Functional requirements of the process
- Human activities
- Natural events
- Site conditions

Safety analysis: OGS

Behavioral requirements

Situations: I to IV

1. Operating conditions
 - Internal Hazard
2. External Hazard

Loads = combination of actions
 = Permanent + variable + incidental/accidental

Design and analysis of the structure

F. Plewinski

Codes and Standards

Criteria

Check

Materials data requirements for high power target design
E. Noah, 4th HPTW, Malmö, SE, 2-6 May 2011
RCC code description

> **The RCC-MRx:**
> - Merging of RCC-MR with RCC-MX.
> - RCC-MR: equipments for use at nuclear installations (also ITER, except PWR): 12 materials.
> - RCC-MX: mechanical equipment at research reactors (JHR): Aluminium and Zirconium alloys specific.

> **RCC describes requirements on:**
> - materials procurement.
> - design.
> - analysis.
> - construction qualification.
> - examinations.
RCC irradiation scales

> **Non-alloy and low-alloy steels:**
 - Fast neutrons > 1 MeV / cm².

> **Austenitic stainless steels:**
 - Displacements per atom using NRT model.

> **Aluminium alloys:**
 - % radiogenic silicon: conventional thermal neutron flux (0.0254 eV).

> **Zirconium alloys:**
 - Fast neutrons > 1 MeV / cm².
RCC irradiation range

Negligible irradiation

Significant irradiation

Maximum allowable irradiation
Material properties covered in code

RCC Properties Group

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>elastic</th>
<th>inelastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient of thermal expansion</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Young modulus</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>density</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>specific heat capacity</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>thermal diffusivity</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

border lines

Values of S_m (linked with S in RCC)	Not supplied
Values of S_m (linked with S_m in RCC)	Not supplied
Tensile Stress-Strain curves: For plastic strain limited to x%	Not supplied
Tensile Stress-Strain curves: For total strain attaining maximum elongation	Not supplied

Analysis data 1

Cyclic curves	x	x
Coefficient K_c	x	x
Coefficient K_v	x	x
Symmetrisation coefficient K_s	x	x
Fatigue curves	x	x
Values of J_{lc}	x	x

Analysis data 2

THERMAL AGEING COEFFICIENT	x
VALUES OF K_T	x
Creep rupture stress S_R	x
Creep strain rules: primary creep	x
Creep strain rules: secondary creep	x
FATIGUE-CREEP INTERACTION DIAGRAM	x
Maximum allowable strain DMAx	x

Analysis data 3

conventional yield stress at 0.2 % offset $R_{0.2}$	Not supplied
Tensile strength R_m	Not supplied
Values of S_m	Not supplied
Values of S_m	Not supplied
Ductility characteristics (after and before irradiation)	Not supplied
Tensile Stress-Strain curves: For plastic strain limited to x%	Not supplied
Tensile Stress-Strain curves: For total strain attaining maximum elongation	Not supplied

Cyclic curves

VALUES OF K_c	Not supplied
VALUES OF K_v	Not supplied
VALUES OF K_s	Not supplied
Fatigue curves	Not supplied
Values of J_{lc}	Not supplied

Materials data requirements for high power target design

E. Noah, 4th HPTW, Malmö, SE, 2-6 May 2011
Adding material data to code

> **Material listed in code:**
 - Data in (RCC standard) non-negligible irradiation domain needed.
 - Data in new irradiation needed.

> **Material not listed in code** (e.g. Ti alloy Ti6Al4V):
 - Data in negligible irradiation domain to be added.
 - Data in (RCC standard) non-negligible irradiation domain needed.
 - Data in new irradiation regime needed.
Adding material data to code

> **Phase I:**

- Identify origin of criteria for selection of data.
- Clarify use of code for elastic/inelastic design.
- Highlight applicability of code to ESS components.
- Draft list of components that can be designed with RCC.

> **Phase II:**

- Analyse damage modes for spallation environment.
- Establish whether spallation materials data can be included in code.
- Assess whether formal "modification request" can be drafted.
TMR structural materials environment

- Neutrons: $-200^\circ C < T < 100^\circ C$
e.g. Al6061, Zircaloy
- Neutrons: $T < 100^\circ C$
e.g. Al6061
- Protons + Neutrons: $30^\circ C < T < 400^\circ C$
 - Low-cycle fatigue (beam trips, LBE target)
 - High-cycle fatigue (rotating target)
e.g. T91, SS316

1.25 $\times 10^{16}$ protons/s
5.6 $\times 10^{17}$ neutrons/s
LBE target structural materials

<table>
<thead>
<tr>
<th>LBE Target</th>
<th>Inner vessel</th>
<th>Middle vessel</th>
<th>Outer vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Martensitic steel T91</td>
<td>SS316</td>
<td>SS316</td>
</tr>
<tr>
<td>Material - Reference</td>
<td>Material - Alternative 1</td>
<td>AlMg3</td>
<td>AlMg3</td>
</tr>
<tr>
<td>Physical characteristics and boundaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness [mm]</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Contact fluid inner/outer</td>
<td>liquid LBE/helium</td>
<td>helium/water</td>
<td>water/helium-or-vacuum</td>
</tr>
<tr>
<td>Operating temperature and pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature [°C]</td>
<td>200-400</td>
<td>20-400</td>
<td>20-400</td>
</tr>
<tr>
<td>Operating pressure [Bar]</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Austenitic steel fission vs spallation

Materials data requirements for high power target design
E. Noah, 4th HPTW, Malmö, SE, 2-6 May 2011
Austenitic steel spallation data

No substantial differences for 316-type steels between fission reactors (US fusion program DB) and spallation sources under these conditions, $T > 100 ^\circ C$.

Austenitic steel spallation data

Saturation above 10 dpa?
Issue with TE margins for engineering design
Martensitic steel spallation data

9\%Cr-steels

dpa rate \approx 2.3 \times 10^{-6} \text{ dpa/s}
He/dpa ratio \approx 6400 \text{ appm He/dpa}
T_{irrad} = 325 \degree C
superposition law = quadratic

1250 \text{ appm He}

\begin{align*}
\Delta \sigma_y (\text{MPa}) \\
\text{neutron dose (dpa)}
\end{align*}

Data from:
- Jung et al. JNM 318 (2003) 241
- Jung et al. JNM 343 (2005) 275

R. Chaouadi et al. JNM386-388 (2009) 544-549
Martensitic steel spallation data

9%Cr-steels
$T_{\text{irrad}} = 300 - 325 \, ^\circ\text{C}$

- $\Delta \sigma_y$ (MPa)
- neutron dose (dpa)

- neutron irradiation
- proton irradiation
- He-implantation

R. Chaouadi et al. JNM386-388 (2009) 544-549
Elastic vs. inelastic design

- Seeking *less conservative* approach to:
 - *Reduce* typical *thicknesses* of *structural components*
 - *Irradiation* leads to severe *embrittlement*
 - Design code *not prescriptive*, only offers *guidelines*
 - *Data* on *irradiated properties* for *inelastic design* are scarce

<table>
<thead>
<tr>
<th>Target</th>
<th>Vacuum</th>
<th>H₂O</th>
<th>He/Vacuum</th>
<th>H₂O</th>
<th>He</th>
<th>LBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderator + pre-mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂</td>
<td>Al6061</td>
<td>Al6061/Zircaloy</td>
<td>Al6061/Zircaloy</td>
<td>SS316</td>
<td>T91/SS316</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td>Al6061</td>
<td>Al6061/Zircaloy</td>
<td>SS316</td>
<td>SS316</td>
<td></td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>SS316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LBE</td>
<td>T91/SS316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Materials test requirements

> **Standards:**
- Samples (geometry, composition, manufacturing).
- Test procedures.

> **Environment:**
- Radiation/Temperature/Mechanical loads/Fluids.

> **Mechanical properties:**
- Tensile/Impact/Fracture toughness/Fatigue/Hardness/Swelling/Creep.

> **Activity & radiochemistry:**
- Diffusion/release.
- Gamma/alpha spectrometry.
- H/He conc.

> **Microstructure:**
- SEM/EDX, EPMA, TEM.
Summary

> Use of design codes strongly motivated by safety and reliability of components.

> Large number of ESS target station components already qualify for use of design codes.

> Critical components subjected directly to proton beam currently not covered by design codes.

> Large amount of data exists on structural materials from spallation community.

> Inclusion of spallation data in design code:
 - Review criteria for data inclusion used by code
 - Assess existing spallation data
 - Draft code modification requests