Neutrino Factory Front End (IDS) and Variations

David Neuffer

November 23, 2010
Outline

Front End for the IDS Neutrino Factory

- Using newer initial beams
 - H. Kirk from “latest” MARS, from study 2A, ISS
 - More μ/p than previous version ??

Front End Comments

- Losses/shielding
 - B/V variation ...
- Mitigation
Drift ($\pi \rightarrow \mu$)

“Adiabatically” bunch beam first (weak 320 to 232 MHz rf)

Φ-E rotate bunches - align bunches to ~equal energies
- 232 to 202 MHz, 12MV/m

Cool beam 201.25 MHz
Simulation results

- H. Kirk provided initial files (+, - particles) from Mars 15.xxx (8GeV p n Hg jet)
 - 0, 1, 2, 3, 4 ns
- Check to study initial Δt sensitivity
- Kept only μ, π
 - 10000 particle simulation
- ~10% loss “0” to 4 ns
- Obtain more μ/p than previous initial distribution
 - 0.080 \rightarrow 0.096/0.094 ??
- Initial beam has 75MeV/c cut off

<table>
<thead>
<tr>
<th>Case</th>
<th>μ/p at 230m</th>
<th>μ/p at 245m</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^+, 0 ns</td>
<td>0.103</td>
<td>0.109</td>
</tr>
<tr>
<td>μ^+, 1 ns</td>
<td>0.097</td>
<td>0.104</td>
</tr>
<tr>
<td>μ^+, 2 ns</td>
<td>0.102</td>
<td>0.104</td>
</tr>
<tr>
<td>μ^+, 3 ns</td>
<td>0.096</td>
<td>0.101</td>
</tr>
<tr>
<td>μ^+, 4 ns</td>
<td>0.089</td>
<td>0.092</td>
</tr>
<tr>
<td>μ^-, 0 ns</td>
<td>0.101</td>
<td>0.105</td>
</tr>
<tr>
<td>μ^-, 2 ns</td>
<td>0.100</td>
<td>0.105</td>
</tr>
<tr>
<td>μ^-, 3 ns</td>
<td>0.094</td>
<td>0.099</td>
</tr>
<tr>
<td>μ^-, 4 ns</td>
<td>0.091</td>
<td>0.098</td>
</tr>
</tbody>
</table>
Initial cut off

Fi(rms) = 1.8167 L = 0.000 m
\(dE = 0.6876\) GeV \(Ebar = 0.5906\) GeV
\(X_{rms} = 0.039082m\) \(P_{x, rms} = 0.159002\) GeV/c

19998 particles
9665 between 0.0800 and 0.3500 GeV

75 MeV/c
Beam losses along Front End - half-full?

- Start with 4MW protons
 - End with ~25kW $\mu^+ + \mu^-$
 - plus p, e, π, ...
 - ~20W/m μ-decay
 - ~0.5MW losses along transport
 - 0.2MW at $z>50m$

- "Hands-on" low radiation areas if hadronic losses < 1W/m
 - Booster, PSR criteria

- Simulation has >~100W/m
 - With no collimation, shielding, absorber strategy

- Need more shielding, collimation, absorbers
 - Reduce uncontrolled losses
 - Special handling
Comments on Front End Losses

- First ~70m has 30cm beam pipe within ~65cm radius coils
 - ~30+ cm for shielding
 - Radiation that penetrates shielding is what counts ...
 - < 1W/m ?
 - Could the shielding handle most of the losses in the first ~70m?

- Should add proton absorber
 - After π-Decay - z= 50m?
 - Stop p, π, ...; transmit μ ...
 - With chicane ??

- Thickness allowed ??
 - Need to properly track reference particles through absorbers
Comments on Losses

- After protons stopped, most losses are μ's and e's from μ-decay
 - Less dangerous in terms of activation
 - > 1W/m OK?
 - μ's would penetrate through more shielding
Summary

- **IDS front end**
 - Newer MARS-generated particles
 - Initial bunch length dependence
 - Newer version has more μ/p

- **Radiation problems**
 - "mitigation strategies"

- **Questions ??**