Energy-Phase Rotation with a proton absorber

David Neuffer

September 27, 2011
Outline

- Front End for the Neutrino Factory-IDS
 - Beam loss and control
- Add Chicane + Proton absorber
 - Chicane removes high-energy particles
 - Proton Absorber removes low energy
- Need to rematch bunching and phase rotation
 - compensate for energy loss in absorber
Chicane, Absorber geometry

Chicane:

- **bend out**
 - $L=5\text{m}$, $\theta=12.5^\circ$
- **bend back**
 - $L=5\text{m}$, $\theta=-12.5^\circ$
 - centroid displacement of 1.1m
- **composed of displaced, tilted $B=1.5\text{T}$ coils**
 - $\sim0.25\text{m}$ segments

Absorber:

- **10cm Be**
 - $\sim30\text{MeV}$ energy loss
Chicane effect:
- $P > \sim 500\text{MeV/c}$ are lost
- $P < \sim 500\text{MeV}$ pass through
 - displaced by $\sim 1.1\text{m}$
- Nominal Path length increased by only 8cm
 - orbits perturbed

Absorber effect:
- removes low energy particles
 - designed to remove protons
- distorts energy distribution
 - energy phase-rotation distorted; must be rematched
Front End: IDS Baseline

- **IDS setup**
 - particle 1-233 MeV/c
 - particle 2-154 MeV/c
 - Drift
 - Bunch N=10
 - Rotate N=10.05
 - Cool -201.25MHz

- **with absorber**
 - particle 1-270 MeV/c
 - particle 2-185 MeV/c
 - absorber at 29m
 - 10cm Be
 - particle 1-237 MeV/c
 - particle 2-144 MeV/c
 - Bunch N=10
 - Rotate N=10.04
 - Cool -201.25MHz
 - $p_{\text{ref}}=230$ MeV/c
Front End with Absorber

- with absorber
 - particle 1-270 MeV/c
 - particle 2-185 MeV/c
 - absorber at 29m
 - 10cm Be
 - particle 1-237 MeV/c
 - particle 2-144 MeV/c
 - Bunch N=10
 - Rotate N=10.04
 - Cool -201.25MHz
 - $p_{ref}=230$ MeV/c
Longitudinal beam through system

0.1m Be absorber

1m
29m
29.1m
38m
46m
98m
152m
252m
ICOOL Simulation results

- Similar to without absorber
 - ~10m shorter drift
 - ~10% fewer μ's within acceptance
 - drop of ~20% intensity at absorber
 - but longitudinal emittance also reduced
 - surviving μ's are stretched in longitudinal phase space
Summary; to do

- Procedure for rematching bunching/rotation with “proton” absorber is demonstrated
 - track reference particles with energy loss through system
- results similar to without absorber
 - ~10% fewer μ’s accepted
 - Losses reduced by some factor

- Chicane + Absorber Geometry needs to be defined and simulated
 - ~10—20% less μ/p (?)
 - Losses reduced/controlled by ?

- Is this version preferred?