Variations of the front end for a neutrino factory

David Neuffer

FNAL

(September 15, 2009)
Outline

- Front End for the Neutrino Factory/MC
 - Shorter front end example-
 - basis for present study
- Rf cavities in solenoids?
 - high gradient cavities may not work in ~2T fields
 - Option explored
 - Use lower fields (B, V')
- Need baseline design for IDS
 - need baseline for “5-year Plan”
IDS - Shorter Version

- Reduce drift, buncher, rotator to get shorter bunch train:
 - 217m \Rightarrow 125m
 - 57m drift, 31m buncher, 36m rotator
 - Rf voltages up to 15MV/m ($\times 2/3$)
- Obtains $\sim 0.26 \mu/p_{24}$ in ref. acceptance
 - Similar or better than Study 2B baseline
- Better for Muon Collider
 - 80+ m bunchtrain reduced to < 50m
 - Δn: 18 \rightarrow 10
Buncher-Rotator settings

- Buncher and Rotator have rf within ~2T fields
 - rf cavity/drift spacing same throughout (0.5m, 0.25)
 - rf gradient goes from 0 to 15 MV/m in buncher cavities

- Cooling baseline
 - ASOL lattice
 - 1 cm LiH slabs (3.6MeV/cell)
 - ~15MV/m cavities
 - also consider H_2 cooling
Optimizations

- Major uncertainty is high-gradient rf within solenoidal fields
 - $V'_\text{rf} / B_{\text{solenoid}}$??
 - Currently have $B = 1.5$ to 2T, $V' = 12$ to 15 MV/m
 - baseline frequency is ~ 200 MHz

- Experiments have achieved ~ 14 MV/m at 2.5-T
 - (~ 0.75-T at nearest thin Be window)
 - Solenoid near 201 MHz cavity
Current study

- Change magnetic field, V'_{rf} to study limits
- Use “short” front end for studies
 - Baseline had 2T solenoid in drift and buncher
 - 0 to 15 MV/m rf
 - 15 MV/m in rotator; 15 MV/m in cooler
 - vary rotator from 9 to 15 MV/m;
 - Cooler 10 to 18 MV/m
 - all in 0.5m rf, 0.25 drift cells
 - with lower gradient

![Diagram of particle beam path]

- FE Target
- Solenoid
- Drift
- Buncher
- Rotator
- Cooler

$p \rightarrow \pi \rightarrow \mu$

10 m ~50 m ~32 m 36 m up to ~100 m
$B_0 = 2.0T$ Results

Muons per 10 8-GeV protons

<table>
<thead>
<tr>
<th>Cooler/Rotator</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>17</th>
<th>18 MV/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.35 (0.63)</td>
<td>0.55 (0.67)</td>
<td>0.66</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.57 (0.72)</td>
<td>0.754</td>
<td>0.77</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.776</td>
<td>0.80</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>0.81</td>
<td>0.85</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

Variation is not strong; more rf still means more muons.
Next try changing B

- $B = 1.25$ T (~Study 2)

- match into alternating solenoid
 - Use old R. Palmer match

- As before, lower cooling gradient implies using less absorber per cell
 - 15MV/m – 1cm LiH
 - 12MV/m – 0.8cmLiH (~5% worse than 15MV/m)
 - 10MV/m – 0.65cm (~10% worse than ~15MV/m)
B₀=1.25T Results

Muons per 10 8-GeV protons

<table>
<thead>
<tr>
<th>Cooler/ Rotator</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17 MV/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>10</td>
<td>0.61</td>
<td>0.65</td>
<td>0.655</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>0.72</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
<td>0.805</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>(0.65cm)</td>
<td>(0.8cm)</td>
<td>1.0cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z=231m</td>
<td>z=220m</td>
<td>z=204m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variation is not strong; more rf still means more muons
B=2.0T \rightarrow 1.25T

- B=2T is only slightly better than B=1.25T
 - only \sim5% fewer μ/p in acceptance at 1.25T

- Optimum B is (probably) somewhere in between
 - B=1.75T for study 2A
 - Cost optimum is (probably) less
Adequate acceptance can be obtained by reducing magnetic fields and gradients.

- $B \rightarrow 1.25\, \text{T}$, $V' \rightarrow 10\, \text{MV/m}$
 - (10MV/m is 7MV/m real estate gradient; could use 7MV/m if space is filled.)

- Reduced B, V' are relatively certain to work.

- Cost optimum?
 - $B=1.5\, \text{T}$?, 12MV/m
Change cavity material - Palmer

- Tech-X rf breakdown modeling workshop

Bob is convinced Be would solve the Front End Problem?

Needs experimental tests !!!

Relative B for same strain

- Cold beryllium gives reduction $B_{\text{damage}} > 10$
 should solve the problem for all cases

Breakdown gradient ε vs B for Cu, Be, Al
For other materials damage assumed at the same strain as Cu at 50 deg.
Plan for IDS

- Need one design likely to work for V_{rf}/B-field
 - rf studies are likely to be inconclusive
 - $B=1.25T; V'=10\text{MV/m}$ is very likely to work
 - $B=2T; V'=15\text{MV/m}$ should work with Be

- Hold review to endorse a potential design for IDS
 - likely to be acceptable (V_{rf}/B-field)
 - April 2010?

- Use reviewed design as basis for IDS engineering study
For IDS, we need an rf cavity + lattice that can work.

Potential strategies:

- Use lower fields \((V', B)\)
 - 10MV/m at 1.5T?
- Use non-\(B\) = constant lattices
 - alternating solenoid
- Magnetically insulated cavities
 - Is it really better ???
 - Alternating solenoid is similar to magnetically insulated lattice
- Shielded rf lattices
 - low B-field throughout rf
- Use gas-filled rf cavities
 - same gradient with/without fields
 - but electron effects?