Graphite progress update

BJ Marsden and G Hall
Nuclear Graphite Research Group,
School of MACE,
The University of Manchester
22 July 2013
Thermal shock

- Graphite has good thermal shock resistance \((R)\)
 - use as crucibles, moulds, dies, and electrodes
- Unirradiated (calculated)
 - POCO ZXF-5Q \(\approx 47\) kW/m
 - Toyo Tanso IG-430 \(\approx 112\) kW/m
- Reduces with irradiation
- Reduces with oxidation

\[
R = \frac{k\sigma_T}{\alpha E}
\]
Thermal shock

Thermal shock resistance of graphites before and after irradiation to $11-15 \times 10^{20} \text{n/cm}^2 (>0.18 \text{ MeV})$ at 750-1000ºC (Sato et al., 1989)

Thermal shock resistance of graphites before and after irradiation to $16-17 \times 10^{20} \text{n/cm}^2 (>0.18 \text{ MeV})$ at 600-850ºC (Sato et al., 1980)

Thermal shock resistance of oxidised IG-430 graphite (Kurumada et al., 1997)
Summary

- **LBNE**
 - POCO ZXF-5Q, 1 dpa, \(\leq 300^\circ C \), no oxidation

- **T2K**
 - Toyo Tanso IG-430, 1 dpa, 700 to 800\(^\circ\)C, \(\sim 8\% \) oxidation

- No ‘show stoppers’ found
 - no obvious better choice of grade
 - recommend (scoping) thermo-mechanical analyses
 - irradiation-induced dimensional and materials properties changes
 - oxidation
 - recommend further calculations (or experiments) on thermal shock resistance