Irradiated T2K Ti alloy materials test plans

T. Ishida, T. Nakadaira (KEK/J-PARC)
B. Hartsell, P. Hurh (FNAL)
D. Asner, D. Senor (PNNL)
M. Fitton, C. Densham (RAL)

The 2nd RaDIATE collaboration meeting
May 20, 2015
Motivation for the studies on Ti-alloys

- Ti alloys at J-PARC neutrino beam-line
 - Beam window (Ti-6Al-4V)
 - Target window-case, surrounding graphite (Ti-6Al-4V)
 - OTR profile monitor, upstream of the target (Ti-15V-3Cr-3Sn-3Al)

- 1st beam window still in service: 1×10^{21} pot
- The 1st target / OTR replaced during 2013-14 maintenance: 6.6×10^{20} pot, 1.2×10^7 pulses

- Expected radiation damage > O(1) DPA
 - Larger than the existing data (~ 0.28 DPA@BLIP)
Neutrino experimental facility at J-PARC

Near Neutrino Detectors
Muon Monitors
Beam Dump
Decay Volume
Target Horns

RCS

295km To Kamioka

110m

280m

MLF

J-PARC, Tokai

The 2nd RaDIATE collaboration meeting at Oxford, May 20, 2015
The secondary beam-line

Beam Transport From RCS to MLF

Helium Vessel
L=110m, V=1,300m³

Decay Volume

Beam Dump

OA 2° 2.5° [3°]

Hadron Absorber

Target

OTR

Baffle

Horn-1 Horn-2 Horn-3

Beam window 15.0m

Baffle
Parameters of Main Ring operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original</th>
<th>Achieved [Mar. 2015]</th>
<th>Doubled rep rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>circumference</td>
<td></td>
<td>1567.5m</td>
<td></td>
</tr>
<tr>
<td>beam kinetic energy</td>
<td></td>
<td>30 GeV</td>
<td></td>
</tr>
<tr>
<td>beam intensity</td>
<td>3.3×10^{14} ppp</td>
<td>1.66×10^{14} ppp</td>
<td>2.0×10^{14} ppp</td>
</tr>
<tr>
<td>[RCS equivalent power]</td>
<td>4.1×10^{13} ppb</td>
<td>2.12×10^{13} ppp</td>
<td>2.5×10^{13} ppp</td>
</tr>
<tr>
<td>harmonic number</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>number of bunches</td>
<td></td>
<td>8/spill</td>
<td></td>
</tr>
<tr>
<td>spill width</td>
<td></td>
<td>~5us</td>
<td></td>
</tr>
<tr>
<td>bunch full width (at extraction)</td>
<td></td>
<td>~50ns</td>
<td></td>
</tr>
<tr>
<td>maximum RF voltage</td>
<td></td>
<td>280kV</td>
<td>560kV</td>
</tr>
<tr>
<td>repetition period</td>
<td>2.1 sec</td>
<td>2.48 sec</td>
<td>1.28 sec</td>
</tr>
<tr>
<td>beam power</td>
<td>750 kW</td>
<td>320 kW</td>
<td>750kW~</td>
</tr>
</tbody>
</table>

- Original (old) planned parameters for 750kW was MR cycle: 2.1s, PPP: 3.3×10^{14}
 - Components of the neutrino facility (target/beam window) were designed
- Present expected parameters: Doubled rep-rate, MR cycle: 1.3 s, PPP: 2.0×10^{14}
 - Instantaneous temperature rise / pulse (thermal shock) will be reduced by 60%
Beam window

Design: 2 x 0.3mm thick titanium domes cooled by helium flow
Material: Titanium alloy bar Ti6Al-4V (Grade 5) (Windows I & II)
Proton beam: 30GeV, 4.2mm sigma
Beam power: 345kW (750kW window design power)
Number of protons to date: 1.04x10^{21} (May 2015 and still in service)
Max temp (at beam centre): 52°C estimate at current beam power (82°C @750kW)
Results for 750kW simulations

- Estimate of current conditions at 345kW
- Peak stress ~ 50MPa
- Fatigue cycles $\sim 0.5 \times 10^6$ @ 0.5Hz
Effects of elevated temperature, fatigue & radiation damage

Significant loss of ductility at 0.2~0.28 dpa
Now likely to be entirely brittle at 1~2 dpa
Does it matter? (Low stress at moment)

C. Densham

N. Simos

The 2nd RaDIATE collaboration meeting at Oxford, May 20, 2015
Target (He-cooled graphite)

Graphite IG-430U
26mmØ x ~900mm

Ti-6Al-4V
(0.3mmT)

30GeV-750kW (~20kW heat load)
Conductivity 140→20W/mK (rad. damage)

736°C

ΔT~200K ~7MPa (Tensile strength 37MPa)
Proposed new study items

We are proposing new studies:

1. Develop a compact Fatigue Testing Machine (FTM), to study fatigue effect for irradiated specimens in a hot-cell.
3. PIE for the OTR foils (PNNL + UK for micro-mechanical studies)

✓ Activities supported as one of KEK’s US-Japan cooperative research programs, since JFY2014
Fatigue Testing Machine (FTM)

* Compatible for spherically shaped beam-window

1,500 rpm, 10^7 cycles / 4.6 days

Specimen production & a few pre-irradiated tests
Table 1
The foils used in the OTR system.

<table>
<thead>
<tr>
<th>Material (number of foils)</th>
<th>Thickness (µm)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF955 (1)</td>
<td>100</td>
<td>< 1 kW beam power</td>
</tr>
<tr>
<td>Al 1100 (1)</td>
<td></td>
<td>1-40 kW beam power</td>
</tr>
<tr>
<td>Ti 15-3-3-3 (4)</td>
<td>50</td>
<td>> 8 kW beam power</td>
</tr>
<tr>
<td>Ti 15-3-3-3 (1)</td>
<td></td>
<td>Calibration with no beam</td>
</tr>
</tbody>
</table>

S. Bhadra et al., NIM A 703 (2013) 45–58
OTR PIEs ?

- Two Ti foils receive most of the beam.
- The damage localized within beam-spot size (a few mm)
- PIE as func. of distance from beam center

Ti2: 5.0e20
Ti1: 1.6e20

- Optical microscopy at PNNL (SEM/EDS/EBSD, TEM, XRD)
- Under discussion:
 - Micro hardness test
 - Michro-mechanical studies w FIB
- We need your expertise!

The 2nd RaDIATE collaboration meeting at Oxford, May 20, 2015