Discussion on MERIT Cryogenics Specifications

Outline

- List of questions & comments
- Possible roadmap

Ilias Efthymiopoulos, CERN

VRVS Meeting
CERN – December 15, 2005
3. FLOW SCHEME, FUNCTIONALITY

- Redundant gas bottles (for pressurisation)
- LN2 Surface dewar
- Main transfer line
- DVB Phase separator
- Magnet Cryostat
- Transfer lines
- Distribution Valve Box (DVB)
- Heater
- N2 Exhaust (ambient temp.)
Question #1

Filling of the magnet

☐ Fill the cryostat from the bottom rather than the top.

☐ If required by the magnet design, it should be like this.

☐ The "He/LN2 port" will be used instead to support a room-temperature pressure relief valve for the N2 volume of the magnet.

☐ The valve CV203 not in use and could be omitted.
Question #2

Filling rate of the magnet

- The flow capability of the line between the phase separator and the drain port of the magnet to be increased from 200 g/s to 300 g/s.
 - To assure the 100 g/s boil off rate \(\Rightarrow \) 20min cycle
 - As a consequence the size of CV204 should be modified accordingly

- *The design of CV204 can handle 200 g/s which is a large quantity per time unit*
- *Increasing flow specifications results in a cost increase*
- *May risk to bypass the 100g/s boil off rate in which case we must close CV204 further \(\Rightarrow \) Can big valves control small flows?*

- Can the magnet drains support that increase and what would be the corresponding pressure rise?

- How important is to stick to 20min cycle? If it becomes 40min what we would really loose?
Question #3

Safety aspects

- Complete the design and indicate the pressure relieve valves and other safety items.
 - Where will the released N2 gas go?
 - Is there any risk to have activated gas spread into the tunnel?
 - As a consequence the size of CV204 should be modified accordingly

- *It is mandatory and the design should show it that all the gas releases go to TT10 tunnel.*
- *A collector will be installed somewhere → should be shown in some design*
Question #4

Pressure issues

- What will be the estimated supply pressure from the 6000L dewar source to the phase separator/valve box?

- Why is important to design for 20 bar when we may not exceed the 10 bar pressure?

 - It is mandatory from the CERN standards for pressure vessels in underground areas
Question #5

Detailed design

- Need to define all the engineering aspects for the system such as dimensions, physical space, weight limitations, interconnections, etc.

- Define the safety and other standards the system must meet.

 - *All these, and others, will be part of the specifications document that is currently under completion.*
A Possible Roadmap

Target date:
- Installation of the system underground in **November 2006**
 - The magnet arrives from US
 - The cryogenics system is lowered down from bat.180

- **Count backwards:**
 - 2 month setting up and testing at the surface with dummy load (bat.180)
 - 5 months production of CVB

Milestone to place the contract to the company: **March 2006**

Today:
- Address the remaining open issues in the design; go ahead and complete the specs. **Action: Friedrich Haug**

Milestone to have the specs ready: **January 16, 2006**
A Possible Roadmap

Next steps:

☐ Should we find it necessary after today’s discussion:
 - Call an Engineering Review with external experts (3?) to validate the design in case we find it necessary after today’s discussion
 - Agenda:
 - Magnet system by P. Titus
 - Cryogenics system by F. Haug
 - Organize it around January 20

☐ >January 20:
 - RAL takes over and does the tendering. Action: Y.Ivanyushenkov
 - Follow-up production by Yury + Friedrich
 - Delivery at CERN in September 2006