Solid Target Studies in the UK

Rob Edgecock

On behalf of:

J. Back, E. Bayham, R. Bennett, S. Brooks, R. Brownsword, O. Caretta, C. Densham, S. Gray, A. McFarland, P. Loveridge & G. Skoro
Introduction to Solid Targets

• Why solid?
 ▪ lots and lots of experience
 ▪ both liquid targets: looking at solids again

• Candidate materials – strong at high temperature
 ▪ tantalum
 ▪ tungsten

• Issues:
 ▪ shock
 ▪ radiation damage
 ▪ temperature rise........changing target, target station, etc

• Possibilities:
 ▪ a number (150-500) of ~2x20cm bars
 ▪ particle jet
• ISIS:
 ▪ used tantalum for > 10 years, tungsten ~5 years
 ▪ targets changed after ~12dpa
 ▪ ~2-5 years at NF, depending on # of targets
 ▪ no signs of swelling or embrittlement
 ▪ Ta examined in detail; W still to be done

• Still to be done
 ▪ tensile strength after irradiation
 ▪ will be done by Nick Simos at BNL
Shock

- Solid show-stopper: one of main reasons for liquids
- Impossible to lifetime test with proton beam, so

60kV, 8kA PSU, 100ns rise time

0.5mm diameter wire
<table>
<thead>
<tr>
<th>Material</th>
<th>Current (A)</th>
<th>ΔT (K)</th>
<th>Max. T (K)</th>
<th>Pulses to failure</th>
<th>Eq. power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tantalum</td>
<td>3000</td>
<td>60</td>
<td>1800</td>
<td>0.2x10^6</td>
<td></td>
</tr>
<tr>
<td>Tungsten</td>
<td>5560</td>
<td>130</td>
<td>1900</td>
<td>4.2x10^6</td>
<td>2.7/5.0</td>
</tr>
<tr>
<td>Connector failed</td>
<td>5840</td>
<td>140</td>
<td>2050</td>
<td>>9.0x10^6</td>
<td>3.0/5.4</td>
</tr>
<tr>
<td></td>
<td>7000</td>
<td>190</td>
<td>2000</td>
<td>1.3x10^6</td>
<td>4.3/7.8</td>
</tr>
<tr>
<td>Cable #6 failed</td>
<td>6200</td>
<td>160</td>
<td>2000</td>
<td>10.1x10^6</td>
<td>3.3/6.1</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>255</td>
<td>1830</td>
<td>2.7x10^6</td>
<td>6.1/>13</td>
</tr>
<tr>
<td></td>
<td>7440</td>
<td>230</td>
<td>1830</td>
<td>0.5x10^6</td>
<td>5.2/11.4</td>
</tr>
<tr>
<td></td>
<td>6520</td>
<td>180</td>
<td>1940</td>
<td>26.4x10^6</td>
<td>4.1/8.7</td>
</tr>
<tr>
<td></td>
<td>4720</td>
<td>77</td>
<td>1840</td>
<td>>54.4x10^6</td>
<td>2.1/4.5</td>
</tr>
<tr>
<td></td>
<td>6480</td>
<td>~600</td>
<td>>80.8x10^6</td>
<td></td>
<td>4.0/8.6</td>
</tr>
</tbody>
</table>

For 200 targets:
- 10.6 years in 2cm
- >22 years in 3cm
- better at lower temperature
• VISAR

 ▪ Velocity Interferometry System for Any Reflector
 ▪ Surface displacements ~100nm; velocity ~1m/s
 ▪ Two main problems:
 Noise!
 Moving target
 ▪ Signals now being seen – new delay line required

• Protons

 ▪ Two possibilities: ISIS, ISOLDE
 ▪ Crucial measurement: VISAR
Temperature Rise

• $\Delta T \sim 100\text{K}/\text{pulse}; \sim 5000\text{K}/\text{second}$

• Must change target between pulses:
 - 150-500 targets, swapped between pulses
 - particle jet

• Two (and a bit) methods investigated

Chain:
- Speed: $\sim 5\text{m/s}$
- Eddy currents: ok
- Forces: ok
- B-field: ok

Problems:
- moving parts high radiation
- meshing with chains

The target bars are connected by links - like a bicycle chain. Possibly made of carbon reinforced ceramic or carbon/carbon.
Temperature Rise

- **Wheels**

 - Spoked wheel
 - Moving parts out of radiation
 - Structurally ok
 - Radiation shielding
 - Forces on coils
Main problem: radial and hoop stress exceed Cu tensile strength noted as problem in study 2
~7kt bending force: “very difficult”

Possible solutions: pulsed NC magnets
smaller B-field (B² effect)
spokeless wheel......
Spokeless Wheel

- **Outer diameter:** 5m
- **Speed at rim:** 5m/s
- **Revolution time:** 3.14s
- **Target spacing:** 100mm
- **# of targets:** 157

Slot through solenoid: “possible”

Shielding easier

Cooling possible

Issues:

- Eddy currents
- Structural support
- Target mounting
- Radiation damage to support
- Drive system
- Tritium in water

Bruce King et al., 2001

RAI 1957 - 2007
Particle Jet

Advantages

• Solid
 - Shock waves constrained within material - no splashing, jets or cavitation as for liquids
 - Material is already broken
 - Reduced chemistry problems compared with the liquid

• Fragmented
 - a near hydrostatic stress field develops in the particles so high pulsed energies can be absorbed before material damage
 - Better for eddy currents?
 - Favourable (activated) material disposal through verification

• Moving/flowing
 - Replenishable
 - Favourable heat transfer
 - Decoupled cooling
 - Metamorphic (can be shaped to convenience)

• Engineering considerations:
 - Could offer favourable conditions for beam windows?
 - It is a mature technology with ready solutions for most issues
 - Few moving parts away from the beam!
Particle Jet

Issues

• Is W fluidisable and does it flow?
• What density can be achieved?
• Effects of magnetic field
• Effects of electric charge:
 ▪ frictional electrostatic charge
 ▪ beam charge
• Elastic stress waves and thermal expansion
• Erosion and ware of rig and W particles
• Storage and disposal of radioactive powder

First tests at Gericke Ltd
Particle Jet

- **W** powder, $<250\mu m$ particle size
- 3.9bar driving pressure
- Is fluidisable
- Does flow
- Density $\sim 29\%$ v/v
New Test Rig at RAL

Study, in particular: long term erosion and wear density
heat transfer
optimum rig arrangement
Conclusions

• Solid:
 ▪ Shock: looks OK, but VISAR & protons needed
 ▪ Radiation damage: looks OK, but detail needed
 ▪ Spokeless target wheel: early days!
 ▪ NB: most information known or calculable
 no large R&D projects required

• Particle jet:
 ▪ Looks interesting
 ▪ Much work required, but this is starting
 ▪ Use of radioactive powder needs careful study