Optimized Target Parameters and Meson Production by IDS120h with Focused Gaussian Beam and Fixed Emittance

X. Ding, UCLA

Target Studies
May 29, 2012
Relative normalized meson production is 0.84 of max at β^* of 0.3 m for $\varepsilon_x = \varepsilon_y = 5 \ \mu m$.

For low β^* (tight focus) the beam is large at the beginning and end of the interaction region, and becomes larger than the target there.
Non-Linear Fit (Growth/sigmoidal, Hill)

\[Y = \frac{N}{1 + K_2/\beta^{-2}} \]

\[N = 1.018 \]
\[\sqrt{K_2} = 0.1368 \]

Linear emittance is 4.9 μm with beam radius of 0.1212 cm and \(\beta^* \) of 0.3 m.
Gaussian distribution
(Probability density)

• In two dimensional phase space \((u,v)\):

\[
\begin{align*}
 w(u,v) &= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{u^2 + v^2}{2\sigma^2}\right)
\end{align*}
\]

where \(u\)-transverse coordinate (either \(x\) or \(y\)),
\(v = \alpha u + \beta u'\)

\(\alpha, \beta\) are the Courant-Snyder parameters at the given point along the reference trajectory.

In polar coordinates \((r, \theta)\):
\[
\begin{align*}
 u &= r \cos \theta \\
 v &= r \sin \theta \\
 u' &= \frac{(v - \alpha u)}{\beta} = \frac{(r \sin \theta - \alpha u)}{\beta}
\end{align*}
\]
Distribution function method

\[\theta = 2\pi \xi_1, \quad \theta \in [0, 2\pi] \]
\[r = \sqrt{-2\sigma^2 \ln \xi_2}, \quad r \in [0, \infty] \]

Random number generator:

\[\Theta = 2\pi \cdot \text{rndm}(-1) \]
\[R = \sqrt{\text{sqrt}(-2\log(\text{rndm}(-1))) \cdot \sigma} \]
Gaussian distribution (Fraction of particles)

• The fraction of particles that have their motion contained in a circle of radius “a” (emittance $\varepsilon = \pi \frac{a^2}{\beta}$) is

$$F_{Gauss} = \int_{0}^{a} \frac{1}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}} r dr = 1 - e^{-\frac{a^2}{2\sigma^2}}$$
<table>
<thead>
<tr>
<th>$k=a/\sigma$</th>
<th>$\varepsilon_{K\sigma}$</th>
<th>F_{Gauss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\pi (\sigma)^2/\beta$</td>
<td>39.5%</td>
</tr>
<tr>
<td>2</td>
<td>$\pi (2\sigma)^2/\beta$</td>
<td>86.4%</td>
</tr>
<tr>
<td>2.5</td>
<td>$\pi (2.5\sigma)^2/\beta$ or $\sim 6\pi \sigma^2/\beta$</td>
<td>95.6%</td>
</tr>
</tbody>
</table>

Normalized emittance: $(\beta \gamma)\varepsilon_{K\sigma}$
Focused beam

• Intersection point (z=-37.5 cm):
 \(\alpha^* = 0, \beta^*, \sigma^* \)

• Launching point (z=-200 cm):
 \[L = 200 - 37.5 = 162.5 \text{ cm} \]
 \[\alpha = \frac{L}{\beta^*} \]
 \[\beta = \beta^* + \frac{L^2}{\beta^*} \]
 \[\sigma = \sigma^* \sqrt{1 + \frac{L^2}{\beta^*^2}} \]

These relations strictly true only for zero magnetic field.
Setting of simple Gaussian distribution

• INIT card in MARS.INP (MARS code)

\[\text{INIT XINI YINI ZINI DXIN DYIN DZIN WINIT}\]

\[\begin{align*}
XINI &= x0 \\
YINI &= y0 \\
ZINI &= z0
\end{align*}\]

\[\begin{align*}
DXIN &= dcx0 \\
DYIN &= dcy0 \\
DZIN &= dcz0 = \sqrt{1-dcx0^2-dcy0^2}
\end{align*}\]

(Initial starting point and direction cosines of the incident beam)
Setting with focused beam trajectories

- Modeled by the user subroutine BEG1 in m1510.f of MARS code

\[x_v \text{ or } x_h \text{ (transverse coordinate: } u) \]

\[x'_v \text{ or } x'_h \text{ (deflection angle: } u') \]

\[\begin{align*}
XINI &= x_0 + x_v \\
YINI &= y_0 + x_h \\
ZINI &= z \\
DXIN &= dcx_0 + x'_v \\
DYIN &= dcy_0 + x'_h \\
DZIN &= \sqrt{1 - DXIN^2 - DYIN^2}
\end{align*} \]
Optimization of target parameters

• Fixed beam emittance \((\varepsilon_{K\sigma}) \) to \(\pi (\sigma)^2/\beta \)

• Optimization method in each cycle
 (Vary beam radius or beam radius \(\sigma^* \), while vary the \(\beta^* \) at the same time to fix the beam emittance; Vary beam/jet crossing angle; Rotate beam and jet at the same time)

We also optimized the beam radius and target radius separately (not fixed to each other).
Effect of Solenoid Field

[Backtrack particles from $z = -37.5$ cm to $z = -200$ cm.]

(Could then do calculation of α, β, σ at $z = -200$ cm, but didn’t)
Effect of Solenoid Field

5/29/12
Courant-Snyder Invariant
Optimized Target Parameters and Meson Productions at 8 GeV

(Linear emittance is fixed to be 4.9 μm)

<table>
<thead>
<tr>
<th></th>
<th>Radius (cm)</th>
<th>Beam/jet crossing angle (mrad)</th>
<th>Beam angle/Jet angle (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.404 (target)</td>
<td>20.6</td>
<td>117/137.6</td>
</tr>
<tr>
<td>1<sup>st</sup> Run</td>
<td>0.525 (target)</td>
<td>25</td>
<td>120/145</td>
</tr>
<tr>
<td>Old 2<sup>nd</sup> Run (vary target radius and beam radius is fixed to be 0.3 of target radius)</td>
<td>0.544 (target)</td>
<td>25.4</td>
<td>120/145.4</td>
</tr>
<tr>
<td>New 2<sup>nd</sup> Run (vary beam radius with fixed target radius of 0.525 cm; vary target radius with fixed beam radius of 0.15 cm.)</td>
<td>Beam radius: 0.15</td>
<td>26.5</td>
<td>127/153.5</td>
</tr>
<tr>
<td></td>
<td>Target radius: 0.548</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimize beam radius and target radius separately

We found almost no improvement in optimized meson production if the beam radius is not fixed at 30% of target radius and optimized separately!
Optimized Meson Productions at 8 GeV

(Linear emittance is fixed to be 4.9 μm)

<table>
<thead>
<tr>
<th>Gaussian Distribution</th>
<th>Meson Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple (4.04mm/20.6mrad/117mrad)</td>
<td>32563</td>
</tr>
<tr>
<td>Focused beam (4.04mm/20.6mrad/117mrad)</td>
<td>27489</td>
</tr>
<tr>
<td></td>
<td>(-15.6% less than Simple)</td>
</tr>
<tr>
<td>Focused beam with fixed Emittance at 4.9 μm (5.44mm/25.4mrad/120mrad)</td>
<td>30025</td>
</tr>
<tr>
<td></td>
<td>(-8.9% less than Simple)</td>
</tr>
<tr>
<td></td>
<td>(8.4% more than Focused beam)</td>
</tr>
</tbody>
</table>