Optimized Target Parameters and Meson Production by IDS120h with Focused Gaussian Beam and Fixed Emittance (Update)

X. Ding, UCLA

AAG Meeting

June 13, 2013
Optimized Target Parameters and Meson Productions at 8 GeV (Non-Focused Gaussian beam, Zero emittance)

<table>
<thead>
<tr>
<th></th>
<th>HG</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Jet</td>
<td>HG</td>
<td>GA</td>
</tr>
<tr>
<td>Emittance/ (\mu \text{m})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beam radius/cm</td>
<td>0.404</td>
<td>0.44</td>
</tr>
<tr>
<td>Target radius/cm (Fixed at 30% of beam radius)</td>
<td>0.1212</td>
<td>0.132</td>
</tr>
<tr>
<td>Crossing angle between beam and Jet at (z=-37.5 \text{ cm/mrad})</td>
<td>20.6</td>
<td>13</td>
</tr>
<tr>
<td>Beam angle at (z=-37.5 \text{ cm/mrad})</td>
<td>117</td>
<td>88</td>
</tr>
<tr>
<td>Jet angle at (z=-37.5 \text{ cm/mrad})</td>
<td>137.6</td>
<td>101</td>
</tr>
<tr>
<td>Meson Production (400000 protons)</td>
<td>130254</td>
<td>113297</td>
</tr>
</tbody>
</table>
Focused Incident Proton Beam at 8 GeV
(Beam radius is fixed at 0.12 cm at z=-37.5 cm)

Relative normalized meson production is 0.84 of max at β^* of 0.3 m for $\varepsilon_x = \varepsilon_y = 5 \mu$m.

For low β^* (tight focus) the beam is large at the beginning and end of the interaction region, and becomes larger than the target there.

$\sigma_x^* = \sqrt{\varepsilon_x \beta^*}$

$\sigma_x(z) = \sigma_x^* \sqrt{1 + \frac{(z - z^*)^2}{\beta^{*2}}}$
Focused Incident Proton Beam at 8 GeV (Cont’d)
(Beam radius is fixed at 0.12 cm at z=-37.5 cm)

Non-Linear Fit
(Growth/sigmoidal, Hill)

\[Y = \frac{N}{1 + K^2/\beta^2} \]
\[N = 1.018 \]
\[\sqrt{K^2} = 0.1368 \]

Linear emittance is \(5 \) \(\mu \) m with beam radius of 0.1212 cm and \(\beta^* \) of 0.3 m.
Gaussian distribution
(Probability density)

• In two dimensional phase space \((u,v)\):

\[
w(u,v) = \frac{1}{2\pi \sigma^2} \exp\left(-\frac{u^2 + v^2}{2\sigma^2}\right)
\]

where \(u\)-transverse coordinate (either \(x\) or \(y\)),
\(v = \alpha \ u + \beta \ u'\)

\(\alpha\), \(\beta\) are the Courant-Snyder parameters at the given point along the reference trajectory.

In polar coordinates \((r, \theta)\):
\[u = r \cos \theta \quad v = r \sin \theta\]
\[u' = (v - \alpha \ u)/\beta = (r \sin \theta - \alpha \ u)/\beta\]
Distribution function method

\[\theta = 2\pi \xi_1, \quad \theta \in [0, 2\pi] \]

\[r = \sqrt{-2\sigma^2 \ln \xi_2}, \quad r \in [0, \infty] \]

Random number generator:

\[\Theta = 2\pi \times \text{rndm}(-1) \]
\[R = \sqrt{-2 \times \log(\text{rndm}(-1))} \times \sigma \]
Setting with focused beam trajectories

- Modeled by the user subroutine BEG1 in m1512.f of MARS code

\[x_v \] or \(x_h \) (transverse coordinate: \(u \));
\[x'_v \] or \(x'_h \) (deflection angle: \(u' \))

\[\begin{align*}
XINI &= x_0 + x_h \\
DXIN &= dcx_0 + x'_h \\
YINI &= y_0 + x_v \\
DYIN &= dcy_0 + x'_v \\
ZINI &= z_0 \\
DZIN &= \sqrt{1-\text{DXIN}^2-\text{DYIN}^2}
\end{align*} \]
Twiss parameters based on Formulae (old method)

- Intersection point \((z=-37.5 \text{ cm})\):
 \[
 \alpha^* = 0, \quad \beta^*, \quad \sigma^*
 \]

- Launching point \((z=-200 \text{ cm})\):
 \[
 L = 200 - 37.5 = 162.5 \text{ cm}
 \]
 \[
 \alpha = L/\beta^*
 \]
 \[
 \beta = \beta^* + L^2/\beta^*
 \]
 \[
 \sigma = \sigma^* \sqrt{1 + L^2/\beta^*^2}
 \]

These relations strictly true only for zero magnetic field.
Courant-Snyder Invariant
Emittance (rms) and Twiss Parameters

\[
\varepsilon_{\text{rms},x} = \sqrt{\langle x^2 \rangle \langle x^\prime 2 \rangle - \langle xx' \rangle^2}
\]

\[
\alpha_x = -\frac{\langle xx' \rangle}{\varepsilon_{\text{rms},x}}
\]

\[
\beta_x = \frac{\langle x^2 \rangle}{\varepsilon_{\text{rms},x}}
\]

\[
\gamma_x = \frac{\langle x^\prime 2 \rangle}{\varepsilon_{\text{rms},x}}
\]

\[
\beta_x \gamma_x - \alpha_x^2 = 1
\]
Twiss parameters based on backtrack (new method)

• Effect of Solenoid Field
 1. Backtrack particles from $z = -37.5$ cm to $z = -200$ cm.
 2. Using the particle coordinates and momentums at $Z=-200$ cm to calculate the α, β, σ at $z = -200$ cm.
Optimization Procedures
(Focused Beam and Fixed Beam Emittance)

Optimization method in each cycle
(1) Vary beam radius σ^*, while vary the β^* at the same time to fix the beam emittance;
(2) Very target radius;
(3) Vary beam/jet crossing angle;
(4) Rotate beam and jet at the same time to keep the crossing angle same.
Optimized Target Parameters and Meson Productions at 8 GeV and Different Emittance (HG Jet Case)

<table>
<thead>
<tr>
<th></th>
<th>Emittance/μm</th>
<th>2.5 (old method)</th>
<th>2.5 (new method) (1st Run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam radius/cm</td>
<td>0.135</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td>Target radius/cm</td>
<td>0.47</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td>Crossing Angle/mrad</td>
<td>23</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>Beam angle/mrad</td>
<td>118</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Jet angle/mrad</td>
<td>141</td>
<td>143.2</td>
<td></td>
</tr>
<tr>
<td>Meson production (400000 protons)</td>
<td>125991</td>
<td>124255</td>
<td></td>
</tr>
</tbody>
</table>
Optimized Target Parameters and Meson Productions at 8 GeV and Different Emittance (HG Jet Case)

<table>
<thead>
<tr>
<th>Emittance/ μ m</th>
<th>5 (old method)</th>
<th>5 (new method) (1st Run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam radius/cm</td>
<td>0.15</td>
<td>0.195</td>
</tr>
<tr>
<td>Target radius/cm</td>
<td>0.548</td>
<td>0.605</td>
</tr>
<tr>
<td>Crossing Angle/mrad</td>
<td>26.5</td>
<td>30.6</td>
</tr>
<tr>
<td>Beam angle/mrad</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Jet angle/mrad</td>
<td>153.5</td>
<td>157.6</td>
</tr>
<tr>
<td>Meson production (400000 protons)</td>
<td>121696</td>
<td>116523</td>
</tr>
</tbody>
</table>
Optimized Target Parameters and Meson Productions at 8 GeV and Different Emittance (HG Jet Case)

<table>
<thead>
<tr>
<th>Emittance/ μ m:q</th>
<th>7.5 (old method)</th>
<th>7.5 (new method) (1st Run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam radius/cm</td>
<td>0.2025</td>
<td>0.2424</td>
</tr>
<tr>
<td>Target radius/cm</td>
<td>0.60</td>
<td>0.66</td>
</tr>
<tr>
<td>Crossing Angle/mrad</td>
<td>29.3</td>
<td>34.1</td>
</tr>
<tr>
<td>Beam angle/mrad</td>
<td>131</td>
<td>126</td>
</tr>
<tr>
<td>Jet angle/mrad</td>
<td>160.3</td>
<td>160.1</td>
</tr>
<tr>
<td>Meson production (400000 protons)</td>
<td>115760</td>
<td>109916</td>
</tr>
</tbody>
</table>
Optimized Target Parameters and Meson Productions at 8 GeV and Different Emittance (HG Jet Case)

<table>
<thead>
<tr>
<th>Emittance/μm</th>
<th>10 (old method)</th>
<th>10 (new method) (1st Run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam radius/cm</td>
<td>0.2325</td>
<td>0.274</td>
</tr>
<tr>
<td>Target radius/cm</td>
<td>0.65</td>
<td>0.70</td>
</tr>
<tr>
<td>Crossing Angle/mrad</td>
<td>32</td>
<td>37.3</td>
</tr>
<tr>
<td>Beam angle/mrad</td>
<td>135</td>
<td>127</td>
</tr>
<tr>
<td>Jet angle/mrad</td>
<td>167</td>
<td>164.3</td>
</tr>
<tr>
<td>Meson production (400000 protons)</td>
<td>113020</td>
<td>105730</td>
</tr>
</tbody>
</table>