Target Options for a Neutrino Factory

Chris Densham, Otto Caretta, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney

Sept. 20, 2011
Objectives for Target Station

- Target Station is an engineering task
 - With scientific objectives
- Focus on NF (and MC?)
- Objective: maximise useful pion yield per 10^7 s year of operation, over 10 (20?) year lifetime
- Yield = instantaneous yield \times reliability
 - Instantaneous yield is most fun to study
 - has received (almost) all attention so far
 - Reliability includes:
 - Mean time between failure
 - Speed of target, (shield, solenoid etc) changeover
 - Difficult (and less fun) to assess
<table>
<thead>
<tr>
<th>Key target station issues</th>
<th>Candidate/required technologies</th>
</tr>
</thead>
</table>
| 1. Target | 1a. Liquid Hg jet
1b. Fluidised W powder
1c. Solid W bars
1d. Low Z targets |
| 2. Beam window | Thin low Z windows (beryllium) |
| 3. NC inner solenoid | Conventional copper |
| 4. SC outer solenoid | 4a. Nb3Sn
4b. HTS |
| 5. Solenoid shield | WC |
| 6. Target station engineering | Target integration
Remote maintenance
Shielding |
| 7. Beam dump | 7a Liquid Hg
7b For W bars?
7c W powder? |
| 8. Horn back-up? (2 drivers for 2 signs!) | Conventional neutrino beam horn |
| 9. Safety / environmental | ! |
NF vs MC?

- Muon Collider requires point-like source
- High Z target material strongly favoured
 - Liquid mercury jet is baseline
 - See Kirk MacDonald plenary talk tomorrow for latest news
- Convenient to regard Neutrino Factory target station as prototype for Muon Collider
- If one decouples NF from MC, does one end up with same answer?
- For a NF, are other options possible/preferable?
- Can the beam size be increased (from 1.2 mm (rms) baseline)?
Heat loads in baseline Target Station (J. Back)

Liquid mercury jet target
Baseline solenoid system: Two factors lead to significant technical challenges

1. Demanding Magnet Parameters - *High field (14 Tesla) in a large bore (1.3 m)*
 - Huge magnetic forces (10,000 Ton)
 - Large stored energy (~600 MJ)
 - Low temperature margin of superconductor
 - Pushing at the limits of present superconductor technology

2. Harsh Radiation Environment - *Heating and material damage Issues*
 - Heat load from 4 MW pulsed proton beam
 • Total Heat load into the cold mass
 • Local Power Density
 • Instantaneous pulsed heating effects
 - Radiation damage to materials
 • Superconductor
 • Stabiliser
 • Turn-to-turn insulation
 • Load Bearing Elements
Plus one or 2 liquid mercury jet challenges

Disruption of beam dump by mercury jet

Disruption of beam dump by non-disrupted proton beam

Tristan Davenne
Alternatives to liquid mercury jet?

A few personal comments:

• A neutrino factory will not be built any time soon
• The target station is likely to be the limiting factor in the performance of the facility
• Worth spending time looking at as wide a range of alternatives as possible
Fluidised tungsten powder: broadly compatible with baseline

- Rig contains 100 kg Tungsten
- Particle size < 250 microns
- Discharge pipe length c.1 m
- Pipe diameter = 2 cm
- Typ. 2-4 bar (net) pneumatic driving pressure (max 10 bar)

1. Suction / Lift
2. Load Hopper
3. Pressurise Hopper
4. Powder Ejection and Observation
Pneumatic Conveying Regimes Explored so Far

A. Solid Dense Phase
 - Pipeline full of material, 50% v/v
 - Low velocity
 - Not yet achieved in our rig – further work

B. Discontinuous Dense Phase
 - Low fraction of solid material
 - High velocity = erosion!
 - Used in vacuum recirculation line

C. Continuous Dense Phase

D. Lean Phase
 - Low fraction of solid material
 - High velocity = erosion!
 - Used in vacuum recirculation line
Schematic of implementation as a Neutrino Factory target

NB Alternative configurations possible
Pion+muon production for variable length 50% material fraction W vs 100% Hg

Dotted line is Hg jet yield for 10 GeV beam using Study II optimum tilt, beam & target radii

Acceptance criteria uses probability map to estimate acceptance through the cooling channel in (pT, pL) space.

MARS calculation by John Back, Warwick University

$r_{\text{beam}} = r_{\text{target}} = 0.5 \text{ cm}$

NB increasing target radius is another knob to tweak
Meson Production at 8GeV (X.Ding)

<table>
<thead>
<tr>
<th>Target</th>
<th>50% W (9.65 g/cm³) with optimization*</th>
<th>Hg (13.54 g/cm³) with optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meson</td>
<td>29069 (pos: 14099, neg: 14970)</td>
<td>28819 (pos: 13613, neg: 15206)</td>
</tr>
</tbody>
</table>

*Target radius: 0.47 cm, target angle: 80mrad, target length: 45cm
Powder 'thimble' test is scheduled to be first ever experiment on HiRadMat this autumn
Re-circulating solid tungsten bar ideas

J. R. J. Bennett1, G. P. Škoro2, J. J. Back3, D. W. J. Bellenger1, C. N. Booth2, T. R. Edgcock1,4, S. A. Gray1, D. M. Jenkins1, L. G. Jones1, A. J. McFarland1, K. J. Rogers1.

Helmholtz Coil Geometry

Target bars
That’s enough about heavy metals

- Is a low Z target an attractive option for a Neutrino Factory?
Target material & heat loads (A. Longhin)

Released power (MW) vs Ep. 4 MW input.

Power release (MW)

- Mercury L=30cm diam.=1.5cm
- Graphite L=78cm diam.=1.5cm

200 kW heat load in graphite = 10 x T2K heat load at 750 kW
Particle production vs target material

- Proton kinetic energy = 2-10 GeV
- Integrated pion yields comparable for carbon and mercury targets
- Neutron flux for Hg reduced by ~ x15 with C !!

(lower neutron flux => lower heating and radiation damage to solenoid system)

(A. Longhin)
Useful pion/muon yields for different Z’s and beam energies (J. Back)

- Study 2 NF geometry and B-map
- Acceptance probability histogram used at z=6m (based on ICOOL)
Packed bed ideas: more attractive for lower Z

Relevant papers:
- A helium gas cooled stationary granular target (Pugnat & Sievers) 2002 [considered for a neutrino factory target with 4MW beam]
- Conceptual Designs for a Spallation Neutron Target Constructed of a Helium-Cooled, Packed Bed of Tungsten Particles (Ammerman et al.) [ATW, 15MW power deposited, 36cm diameter]
Packed bed cannister in symmetrical transverse flow configuration

Cannister perforated with elliptical holes graded in size along length

Model Parameters
Proton Beam Energy = 4.5GeV
Beam sigma = 4mm
Packed Bed radius = 12mm
Packed Bed Length = 780mm
Packed Bed sphere diameter = 3mm
Packed Bed sphere material: Titanium Alloy
Coolant = Helium at 10 bar pressure
And let’s not forget about beam windows

- T2K beam window (M Rooney)
- Double-skinned titanium alloy window, cooled by helium gas
- Installed October 2009
- Designed for 30 GeV, 0.75 MW beam power
Yield strength of beryllium @ 260°C is around 200 MPa. This leaves a small safety factor for a beryllium window with these beam parameters.
A few comments on future programme

• Target technology
 - main focus of NF/MC target station work since Study II (ie last 10 years)
 - at least 1 ‘champion’ of each of 3/4 target technologies
 - Good to have alternatives (provided does not distract from other work that needs to be done – see below)

• Solenoid System
 - Most critical technological issue for NF/MC Target Station?
 - Study 2 baseline appears far from feasible
 - NB ‘Brute force’ solution with extra shielding:
 • Stored energy $\propto r^2$
 • Only very recently receiving any attention

• Activation/handling/safety/environmental issues
 - The other most serious feasibility issue?
 - Nobody working on it?
Cost / Design Issues

- Cost ⇔ technical risk
- Build costs ⇔ running costs?
- Integrated yield ⇔ integrated costs?
- Target Station Design choices depend on grasp of these issues
- May be worth revisiting:
 - Beam energy
 - Target Z
 - Beam size
 - Solenoids vs horns (and 2 proton drivers...)?