Beam Emittance and Energy Spectra for Hg and C Targets

J. Scott Berg
Brookhaven National Laboratory
MAP 2015 Spring Collaboration Meeting
May 19, 2015
Motivation—Neuffer’s Results

- Neuffer’s talk at the MAP 2014 Winter Meeting, Dec. 4, 2014 (next 3 slides)
- Compared results from 8 GeV beam on Hg target to 6.75 GeV beam on C target
- C target had larger emittance by over a factor of 2
- Large increase in loss in first 6 m
- Performance reduction by about a factor of 2
Motivation—Neuffer’s Results

Use old FE with new initial beam

- New beam has too large initial size and divergence
 - Initial transverse emittance >2X larger
 - \(0.0027 \rightarrow 0.0067\) m-GeV/c
 - \(\approx\) half of initial beam lost in <6m

May 19, 2015 J. S. Berg — Beam Emittance and Energy Spectra for Hg and C Targets — MAP 2015 Spring Collaboration Meeting
Motivation—Neuffer’s Results

First simulations results

- ~60% of initial particles are lost in first 6m
 - previous front end lost ~20%

- Beam starts out very large
 - previous much smaller in front end simulations

- μ/p reduced by factor ~ 2
 - \rightarrow ~0.0545 μ^+/p
 - ~0.042 μ^-/p
 - μ^- less than μ^+

- Not fully reoptimized for new initial beam
Motivation—Neuffer’s Results

6.75 GeV p/ C target – First Look

- Much worse than previous 8 GeV p / Hg target
- 6.75 (~25% less), Hg → C ...
 - but initial beam has very large phase space
- Causes for early losses ???
 - Long C target not a good match to short taper ?
 - target should be within lens center ...
 - “Beam dump” after target blows up π beam ??
- Bugs, errors?
 - Changes in Mars production code ??
 - normalization error ??
 - initialization errors
 - starts from z=2m rather than z=0
- After initial factor of 2 loss, very similar to old front end case
 - not yet reoptimized
- To investigate/debug/reoptimize ..
Scope of my Studies

- Determine reasons for the behavior that Neuffer saw
- Better understand behavior in front end
- Produce distributions, equivalent in some sense to what Neuffer worked with, that address any problems in the originals
- Parameters for optimized (X. Ding) target designs
 - Target in 20 T field, tapering down to 2 T in just under 5 m
 - Hg: 8 GeV beam
 - C: 6.5 GeV beam, 65 mrad tilt, no dump
Effect of Apertures

• Old target apertures
 ◦ Mercury: square root taper aperture, starting at 7.5 cm at \(z = 0.375 \) m, growing to 30 cm at \(z \approx 19 \) m
 ◦ Carbon: 13 cm aperture to \(z = 1.7 \) m, then 23 cm downstream

• Compare: maximum possible apertures near target for 20 T: 13 cm to \(z = 85 \) cm, then 23 cm downstream

• Compare distributions at 3 m to results with old apertures
Effect of Apertures

- Emittances are larger, and are identical for Hg and C: emittances determined by apertures!
 - Normalized canonical emittances in mm
 - Large sign is sort of helicity
 - Difference in emittances is angular momentum

<table>
<thead>
<tr>
<th></th>
<th>μ^-</th>
<th>μ^+</th>
<th>μ^+</th>
<th>μ^+</th>
<th>π^-</th>
<th>π^-</th>
<th>π^+</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg old</td>
<td>30.7</td>
<td>13.4</td>
<td>35.2</td>
<td>15.1</td>
<td>21.0</td>
<td>14.4</td>
<td>21.9</td>
<td>15.1</td>
</tr>
<tr>
<td>Hg new</td>
<td>60.2</td>
<td>17.5</td>
<td>66.6</td>
<td>18.8</td>
<td>62.8</td>
<td>14.6</td>
<td>64.8</td>
<td>14.8</td>
</tr>
<tr>
<td>C old</td>
<td>51.5</td>
<td>22.1</td>
<td>52.7</td>
<td>23.9</td>
<td>36.5</td>
<td>26.0</td>
<td>36.6</td>
<td>27.4</td>
</tr>
<tr>
<td>C new</td>
<td>60.7</td>
<td>18.5</td>
<td>64.5</td>
<td>19.4</td>
<td>63.8</td>
<td>15.4</td>
<td>66.1</td>
<td>15.6</td>
</tr>
</tbody>
</table>

- Spectrum: widening apertures gives more particles at higher energy
Hg at 3 m

- **π⁻**
 - Particles/p/GeV/eV (eV⁻¹)
 - Kinetic Energy (MeV)
 - Old Apertures
 - New Apertures

- **π⁺**
 - Particles/p/GeV/eV (eV⁻¹)
 - Kinetic Energy (MeV)
 - Old Apertures
 - New Apertures

- **µ⁻**
 - Particles/p/GeV/eV (eV⁻¹)
 - Kinetic Energy (MeV)
 - Old Apertures
 - New Apertures

- **µ⁺**
 - Particles/p/GeV/eV (eV⁻¹)
 - Kinetic Energy (MeV)
 - Old Apertures
 - New Apertures
Hg vs. C at 3 m

π^-

μ^-

π^+

μ^+

Particles/p/GeV/eV (eV$^{-1}$)
Kinetic Energy (MeV)

Particles/p/GeV/eV (eV$^{-1}$)
Kinetic Energy (MeV)
Hg vs. C at 3 m

- Hg production per MW always higher than C
- Distributions (per MW!) get very similar at high energy, especially for positive charges
- Pion production peak at 250 MeV shows up in Hg as well as C
 - This peak may be related to geometry: higher fields may move this to higher energy
- C and Hg will require different NBPR
 - Note that NBPR will function differently for both signs (moreso in Hg): must be a compromise, designed simultaneously for both signs
Spectrum vs. Distance (C)

\[\pi^- \]

\[\pi^+ \]

\[\mu^- \]

\[\mu^+ \]
Spectrum vs. Distance

- Going down to 10 m, many more pions lost than muons created
- Peak at 250 MeV goes away
- Conclusion: many pions (and maybe some decay muons) lost on apertures
- Transmission would be improved by higher fields downstream
 - Consistent with Hisham’s results
 - Spectrum would be weighted toward higher energy
IQGSM

- IQGSM gives a “choice of inclusive and exclusive event generators at nuclear inelastic interactions”
- IQGSM=0: exclusive CEM (cascade exciton model?) for $E < 3$ GeV, MARS inclusive for $E > 5$ GeV, LAQGSM for some special cases. Old MARS default.
- IQGSM=1: CEM for $E < 0.3$ GeV, LAQGSM for 0.5 GeV $< E < 8$ GeV, MARS inclusive for $E > 10$ GeV. New MARS default.
Distributions for Hg, IQGSM

13-Jan-2015 IQGSM=0

13-Jan-2015 IQGSM=1

May 19, 2015 J. S. Berg — Beam Emittance and Energy Spectra for Hg and C Targets — MAP 2015 Spring Collaboration Meeting
• Significant performance hit for IQGSM=1 vs. IQGSM=0
• Energy spectrum also changes
• Emittance doesn’t change
• C runs were all with IQGSM=1, earlier Hg were IQGSM=0
Conclusions

- I believe we more or less understand why David saw what he saw
- There were production differences due to differences in the nuclear inelastic model used (IQGSM)
- Emittances are determined primarily by apertures; Hg and C are the same
- High energy portion of spectrum clipped by apertures
- Spectrum shape differs for different signs
Conclusions

- Positive production similar for Hg and C
- Negative production differs significantly at low energy (< 150 MeV for μ^-)
 - Optimal NBPR will be different for Hg and C
- Higher fields downstream would increase number of captured particles, but likely raise energy of spectrum
- Hints that some early absorber may be beneficial, increasing lower-energy flux
 - In old days we had a “pre-cooler”
 - These results hint at a benefit from an “absorber horn”
Conclusions

• Finally: thanks to X. Ding for lots and lots of “ok, now run this configuration” MARS runs, which he completed very efficiently
Next Steps

- What does NBPR optimized for these distributions look like?
 - What portion of the distribution does it use?
 - What is the best compromise for both signs?
 - Is this different for collider and \(\nu \) factory optimization?
 - Is there a significant difference for C and Hg?

- How does chicane change things?
- How does raising the field change things?
- Would an early absorber help?