Neutrinos are Everywhere: Towards a New Understanding of the Quantum Universe

Nigel S. Lockyer
Princeton University
6/17/2016
First Baby Bison Arrives 2016...National Mammal...
Government wants to check they are Bison
Recent Genetic Analysis of Herd...they are bison
Coyotes down selected in national mammal competition
Also down selected and unhappy about it
International Particle Physics Community Convergence

• 2013: European Strategy for Particle Physics updated
 - Endorsed high priority of neutrino physics
 - Bottom line: CERN should help the European neutrino community participate in a long-baseline program outside of Europe

• 2014: “P5” Plan
 - A strategic plan for U.S. particle physics maximizing opportunities for breakthrough science
 - Explicit prioritization, hard choices made within realistic budget scenarios
 - Particle physics community unified behind the plan: 2,331 signatures on letter sent to Secretary Moniz
CERN/DOE/NSF Agreement: Signers…Moniz, Heuer, Cordova
Neutrino Protocol…signed recently at CERN

CERN and Fermilab’s futures are completely intertwined for next several decadesas never before
In December, the United States and the European physics laboratory CERN signed an agreement to partner on continued research at the Large Hadron Collider, upcoming neutrino research and a future particle collider.
Intertwined…impacts our field for next 20+ years

- Fermilab and CERN futures are intertwined like never before
- US contributes to Large Hadron Collider
- CERN, for first time in 60 years, invests in a science program outside of CERN
- LBNF/DUNE will be the first fully international mega science facility on US soil
- Fermilab will host LBNF just as CERN hosts the LHC
- We build on the very successful CERN model of international science…..which means any country is welcome
- CERN is a treaty organization
- Fermilab is a Department of Energy National Laboratory
- To be successful…we must adjust…so far so good
Wolfgang Pauli, 1930

- The radioactive process of nuclear “beta” decay doesn’t seem to conserve energy
- How can that be?

\[^{14}\text{C} \rightarrow ^{14}\text{N} + \text{e}^- \]

\[\text{n} \rightarrow \text{p} + \text{e}^- \]
Pauli’s invisible particle

\[n \rightarrow p + e^- + \bar{\nu}_e \]

I have done a terrible thing.
I have postulated a particle that cannot be detected.
Fermi’s Little Neutral One, 1933

- After the neutron was discovered in 1932, Enrico Fermi proposed that nuclear beta decay involved some new “weak interaction” between a neutron, proton, electron, and Pauli’s invisible particle.
- He coined the name “neutrino” in a brilliant paper submitted to the prestigious journal Nature.
Fermi’s Little Neutral One, 1933

• After the neutron was discovered in 1932, Enrico Fermi proposed that nuclear beta decay involved some new “weak interaction” between a neutron, proton, electron, and Pauli’s invisible particle

• He coined the name “neutrino” in a brilliant paper submitted to the prestigious journal Nature

• The paper was rejected for containing “speculations too remote from reality”
What is a neutrino?

- Elementary particles that come in (at least) three different “flavors”
- Don’t carry any charge, interact only very weakly with other kinds of matter
- Have tiny masses at least a million times smaller than other particle masses
Where do neutrinos come from?

The Sun:
- The nuclear fusion reactions that power the sun produce neutrinos.
- The sun shines almost as brightly in neutrinos as it does in light…. (1-2)% of energy is in neutrinos.
- Sun will shine unchanged for 10^5 yrs.
- 100 billion solar neutrinos pass through your thumbnail each second.

\[
\begin{align*}
p + p & \rightarrow D + e^+ + \nu_e \\
p + ^7\text{Be} & \rightarrow ^8\text{B} + \gamma \\
^8\text{B} & \rightarrow ^8\text{Be} + e^+ + \nu_e
\end{align*}
\]
Where do neutrinos come from?

The Big Bang:
- There are 10 million neutrinos left over from the Big Bang in every cubic foot of space.
- Neutrinos are by far the most prevalent form of known matter in the universe.
Where do neutrinos come from?

Cosmic rays:
- High energy cosmic particles hit the top of the atmosphere
- 10 atmospheric neutrinos per second through your thumbnail

Supernovae:
When a star explodes as a supernova, 99% of the energy of the explosion is carried off by neutrinos
Where do neutrinos come from?

Nuclear reactors:
2 billion nuclear reactor neutrinos pass through your thumbnail per second at 1 km from core per gW
……same no. as sun at 200 meters

The Earth’s crust:
Radioactive decay of uranium and thorium in the Earth’s crust produces both neutrinos and the energy that causes volcanoes and earthquakes
Where do neutrinos come from?

Bananas: A banana emits about one million neutrinos per day from the radioactive decay of potassium 40...avocados...twice as many
Fermi also understood that if you had a strong enough source of neutrinos, then you could eventually detect them.

The nuclear beta decay process:

\[n \rightarrow p + e^- + \bar{\nu}_e \]

implies also this process:

\[\bar{\nu}_e + p \rightarrow n + e^+ \]

Implies need for a beam of neutrinos.
More History: 1st detection of neutrinos -1950s

Savannah River Nuclear Reactor

\[\bar{\nu}_e + p \rightarrow n + e^+ \]

…..and they shut off the reactor!
Discovery of “two neutrinos” – 1960s

The accelerator, the neutrino beam and the detector

Part of the circular accelerator in Brookhaven, in which the protons were accelerated. The pi-mesons (π), which were produced in the proton collisions with the target, decay into muons (μ) and neutrinos (ν). The 13 m thick steel shield stops all the particles except the very penetrating neutrinos. A very small fraction of the neutrinos react in the detector and give rise to muons, which are then observed in the spark chamber.

Based on a drawing in Scientific American, March 1963.

\[\nu_\mu + N \rightarrow \mu^- + X \]
Discovery of the Third Neutrino at Fermilab

IN 2000 A GROUP OF PHYSICISTS FINALLY FOUND EVIDENCE OF THE TAU TYPE OF THIS SUBATOMIC PARTICLE

\[\nu_\tau + N \rightarrow \tau^- + X \]

Robert Rathbun Wilson Hall
In the 1960’s physicists began to consider the possibility of neutrino “transitions” or oscillations....

A little history...

• in the 1960’s, scientists had started thinking “is there anything else?” - maybe ν transitions?

Ratio of predicted number of neutrinos from reactors at very short baselines is consistent with what is measured
Detecting neutrinos from our sun - 1970’s…..a shortage

\[\nu_e + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + e^- \]

Homestake Mine South Dakota
First Evidence for Neutrino Mixing …late 60’s
Super-K discovers that atmospheric neutrinos mix

- 50,000 ton water detector in the Kamiokande mine in Japan
- Built to look for proton decay – did not find it
- And discovered in 1998 that atmospheric neutrinos oscillate

14,000 phototube detectors
2002 Nobel prize in physics:
"for pioneering contributions to astrophysics,
in particular for the detection of cosmic neutrinos"

Ray Davis: Homestake Experiment

Masatoshi Koshiba: Kamioka Observatory
Blue Man Group confirms solar neutrino deficit

• By 2001 more powerful detectors confirmed that Davis and Bahcall were both right

SNO experiment in Sudbury Canada with US & UK
Neutrinos are hot

The Nobel Prize in Physics 2015

“for the discovery of neutrino oscillations, which shows that neutrinos have mass”

Takaaki Kajita (Super-Kamiokande)
Arthur B. McDonald (SNO)
Neutrino flavors oscillate

8 minutes later:

\[\nu_e \quad \nu_e \quad \nu_\mu \quad \nu_\tau \]
Why are neutrinos interesting?

• The wide range of quark masses is puzzling
 – The top quark discovery was an exclamation mark on that

• The ultra-tiny neutrino mass doesn’t fit the standard model
 – In fact we do not understand neutrinos mass…..other than it has mass

• The Higgs discovery has brought flavor and mass issues to the forefront

• One future lies in better understanding neutrinos
 – their mass ordering
 – the origin of their masses and why they are so small
 – their interactions (CP Violation)
 – how many types of neutrinos
 – relationship to matter-antimatter asymmetry in universe (leptogenesis) and structure of the universe
CP symmetry

- From Dirac onwards physicists assumed that Nature does not have separate rules for particles and antiparticles
- This is called CP symmetry
- Here “C” refers to charge conjugation, changing the sign of electric (and other) charges.
- “P” is parity, which changes the “handedness” of a particle, i.e. the orientation of its spin compared to its motion
- Thus CP interchanges a left-handed electron with its antiparticle, a right-handed positron
CP violation in the Quark Sector

- It was a big surprise in 1964 when Cronin and Fitch showed that neutral kaon oscillations have a small asymmetry in CP at Brookhaven.
- Direct violation of CP symmetry in kaon decays was also discovered at Fermilab in 1999 with the KTEV experiment and at CERN NA31, NA48.
CP violation and Quark Mixing

- Cabbibo, Kobayashi and Maskawa showed that there is one physical phase parameter in the CKM matrix, which if nonzero will cause CP violation.

- This hypothesis was tested by many experiments at the B factories, at Fermilab, and at CERN.

- All observed cases of CP violation appear to arise from this CKM phase, whose value is 67 degrees.

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} =
\begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\
 -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]
CP violation and neutrinos

- Strangely, the amount of CP violation seen with quarks is not nearly enough to explain the dominance of matter over antimatter in the universe.
- Right idea, wrong particles?
- Neutrino oscillations show that neutrino flavors are even more mixed up than quark flavors.
- It is possible that neutrinos violate CP symmetry, and by a much larger amount than do quarks.
Neutrino and Quark Mixing and Masses

Pontecorvo–Maki–Nakagawa–Sakata matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Leptonic Mixing Matrix

\[
V_{PMNS} \approx \begin{pmatrix}
0.8 & 0.5 & 0.2 \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{pmatrix}
\]

Neutrino Masses < 2 eV

\[
V_{CKM} \approx \begin{pmatrix}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{pmatrix}
\]

Quark Masses = 3\times10^6 eV
to 1.7\times10^{11} eV

Very different
No idea why, but it is probably important
CP violation, neutrinos, and leptogenesis

• If the neutrino “see-saw” idea is correct, the early universe contained the very heavy partners (Majorana mass) of the light neutrinos

• Heavy neutrinos would have decayed into ordinary matter with CP violating decays

• If neutrinos violate CP, this process of “leptogenesis” could have produced the visible universe
What gives mass to Quarks & Leptons plus corresponding antiparticles
The dynamical origins of mass

• A headline of the Standard Model is that elementary particles do not naturally have mass
• Instead they can acquire mass through interactions
• Contrast to charge and spin, which appear to be immutable

Professor Higgs explains: there is an invisible force field that interacts with particles to give them mass...

... also it makes Higgs bosons at the LHC
Guralnik, Hagen, and Kibble co-authored one of three original papers that described the Higgs mechanism, with the other two papers by Higgs, and Brout and Englert. (Sakurai Prize)
Precision Higgs Physics

“This paper is dedicated to the memory of Robert Brout and Gerald Guralnik, whose seminal contributions helped elucidate the mechanism for spontaneous breaking of the electroweak symmetry.”
Higgs and the mysteries of mass

• The discovery of the Higgs boson verifies the Higgs mechanism of generating mass for the W and Z bosons

• And Yukawa couplings of the Higgs field to the quarks and charged leptons can give them masses proportional to the vacuum value of the Higgs field, 174 GeV

\[y_e \bar{L} H e_R + h.c. \rightarrow y_e \frac{v}{\sqrt{2}} (\bar{e}_L e_R + \bar{e}_R e_L) \]

But this still leaves many of the mysteries unsolved…
How does the Higgs talk to Neutrinos?

Can try to copy how the electron gets a “Dirac” mass:

\[y_\nu \bar{L} H \nu_R + h.c. \rightarrow y_\nu \frac{v}{\sqrt{2}} (\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L) \]

Has to be

\[<0.00000000000003 \]

A new fermion that carries no Standard Model charges of any kind. Since it can be its own antiparticle, it can have its own “Majorana” mass:

\[M_R \bar{\nu}_R \nu_R^c \]
Neutrino masses: what we know and don’t know

\[
\begin{align*}
(Mass)^2 & \quad \nu_3 \\
& \quad \Delta m^2_{\text{atm}} \\
& \quad \nu_2 \\
& \quad \nu_1 \\
& \quad \Delta m^2_{\text{sol}}
\end{align*}
\]

\} \quad \nu \text{ Oscillation}

\} \quad \text{Cosmology, } \beta \text{ Decay,}

How far above zero is the whole pattern?

KArlsruhe TRIXtium Neutrino Experiment (KATRIN)
Neutrino beams from accelerators

- At Fermilab we already make the world’s most powerful neutrino beams...low & high energy
- Will not discuss low energy program
- Plans to quadruple the beam in the future...targets are the limits
- Achieved 700 kW this week
Return To Davis’s Homestake Mine?

Neutrino beam to Minnesota

Nigel Lockyer | Princeton June 2016
NOvA...our present flagship neutrino experiment
The NOvA neutrino detector….14,000 tons liquid scintillator
……one “event” per day…results in London Neutrino 2016
The location is very picturesque, in the Black Hills (Pahasapa)
Homestake Gold Mine...most productive in the world at one time
41 million ounces from a 167 million tons of rock...quarter of an ounce per ton
Neutrinos and Gold.....
Governor is explaining neutrinos to community for 20 minutes

Senator asks about neutron star formation
What’s a DUNE? What’s an LBNF?

• The **Deep Underground Neutrino Experiment** is an experiment for **neutrino science**
• The **Long-Baseline Neutrino Facility** is the infrastructure necessary to send a powerful beam of neutrinos 1300km through the earth, and measure them deep underground at South Dakota’s Sanford Underground Research Facility.

• The DUNE/LBNF project will be the first internationally conceived, constructed, and operated mega-science project hosted by the Department of Energy in the United States.
 - DUNE is an international science collaboration (25% US and 75% International)
 - LBNF is a US hosted facility (75% US and 25% international)
DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

1) Neutrino Oscillation Physics
 - Discover CP Violation in the leptonic sector
 - Mass Hierarchy
 - Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm

2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \rightarrow K^+\bar{\nu}$

3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to ν_e
3.3 Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to ν_e

$$\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^*$$

Physics Highlights include:

- Possibility to “see” neutron star formation stage
- Even the potential to see black hole formation…
Timescales: year zero = 2026

Rapidly reach scientifically interesting sensitivities:
- e.g. in best-case scenario for Mass Hierarchy:
 - Reach 5σ MH sensitivity with ~20 kt.MW.year
- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$):
 - Reach 3σ CPV sensitivity with ~60 kt.MW.year
 - Discovery
- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$):
 - Reach 5σ CPV sensitivity with ~210 kt.MW.year
 - Discovery
- Strong evidence

★ Genuine potential for early physics discovery
The DUNE Collaboration

Keeps growing:

867 Collaborators
30 Nations
153 Institutions
Far Site 4850 level…in need of caverns for DUNE
CERN Design for Free-Standing Steel Cryostat with Membrane Cryostat Interior

External (Internal) Dimensions
19.1m (15.1m) W x 18.0m (14.0m) H x 66.0m (62.0m) L
Single Phase Detectors inside the Cryostats

- Detectors consist of:
 - Anode Plane Arrays
 - Cathode Plane Arrays
 - Field Cage
 - Photon detectors
 - Readout electronics and DAQ

- How they work:
 - Neutrinos (occasionally) collide with Argon atom.
 - Resulting particles cause electrons to be knocked loose from liquid argon atoms, which “drift” to the APAs.
Single Phase Detectors inside the Cryostats

• Detectors consist of:
 - Anode Plane Arrays
 - Cathode Plane Arrays
 - Field Cage
 - Photon detectors
 - Readout electronics and DAQ

• How they work:
 - Neutrinos (occasionally) collide with Argon atom.
 - Resulting particles cause electrons to be knocked loose from liquid argon atoms, which “drift” to the APAs
CERN Test Beam Infrastructure

• protoDUNE facility at CERN will include 2 test beams, 2 cryostats
 - CERN invested into each prototype
• Construction of detector hall well underway
Ross Shaft Refurbishment On Track….its really happening

- Ross Shaft refurbishment required to support construction of the Long-Baseline Neutrino Facility (LBNF) Project. Shaft originally built in 1930’s.
- The Ross Shaft has been refurbished to 3,765 feet from surface (75% completed). On track for a 2017 completion and a transition to LBNF construction.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td></td>
<td></td>
<td>Q1 CY2014</td>
<td>Q1 CY2015</td>
<td>Q1 CY2016</td>
<td>Q1 CY2017</td>
<td>Mid CY2017</td>
<td></td>
</tr>
</tbody>
</table>

New Shaft Steel Recently Installed
Traversing Up the Ross Shaft Video - from old steel into new
Traversing Up the Ross Shaft Video - from old steel into new
Construction Logistics Planning: Test Blast Program

- Excavation design includes a model for vibration & blast air overpressure
 - Based on industry experience and geotechnical site investigation
 - Potential risks to other 4850L experiments discussed during Logistics Workshop
- Completed test program in March to validate assumptions and provide input to final design
Thank You.

• Thanks to Mark Thomson (Cambridge), Andre Rubbia (ETH)...DUNE spokespeople
• Thanks to Fermilab: Chris Mossey, Mike Headley, Elaine McCluskey and LBNF team
• Thanks to Marzio Nessi (CERN)
• Thanks Eric James (TC) and C. K. Jung (RC)
• Thanks to the DUNE Collaboration
National Mammal Dance video: Fermilab’s Derek Plant
• Likes technology and likes a challenge
• BCD encapsulated Kirk’s ambitions like no other experiment
• It had “more R&D needed per cm^2 than any other proposal the Fermilab PAC had encountered” Peter Sharp RAL
• Our R&D proposal was approved a T-784
 – 100MB/sec data rate…triggerless..$1M/drive movie industry
 – Hypercube computing as online trigger-i860 processors
 – RICH using csI photocathodes
 – Vertex detector inside the vacuum
 – Silicon tungsten calorimeter…hey CMS
 – Integrated circuit silicon readout chip, BVX, became SVX for CDF and D0
 – Time of Flight system….used in CDF
BCD begins March 1987...P-784

Bottom Collider Detector

- Large Radius Vacuum Pipe
- Flux Return
- Superconducting Solenoid - 3 Tesla
- Silicon Tracking
- EM Cal Tungsten Silicon
- Drift Tracking
- Silicon Stations
- Dipole Coil
- Drift Tracking
- EM Cal Tungsten Silicon
Leon wanted a workshop and eventually funded us for R&D

Predates B-factory at SLAC
The B Physics Era....

- The ideas were good
- We were prolific writers, especially KTM
Proposal for Research & Development:
Vertexing, Tracking, and Data Acquisition
for the Bottom Collider Detector

H. Castro, B. Gomez, F. Rivera, J.-C. Sanabria, Universidad de los Andes
P. Yager, University of California, Davis
E. Barsotti, M. Bowden, S. Childress, P. Lebrun, J. Morfin, L.A. Roberts, R. Stefanski,
L. Stutte, C. Swoboda, Fermilab
P. Avery, J. Yelton, University of Florida
K. Lau, University of Houston
R. Burnstein, H. Rubin, Illinois Institute of Technology
E. McCliment, Y. Onel, University of Iowa
G. Alverson, W. Faissler, D. Garelick, M. Glaubman, I. Leedom, S. Reucroft, D. Kaplan,
Northeastern University
S. E. Willis, Northern Illinois University
S. Fredricksen, N. W. Reay, C. Rush, R. A. Sidwell, N. Stanton,
Ohio State University
G. R. Kalbfleisch, P. Skubic, J. Snow, University of Oklahoma
N. S. Lockyer, R. Van Berg, University of Pennsylvania
D. Judd, D. Wagoner, Prairie View A&M University
D. R. Marlow, K. T. McDonald, M.V. Purohit, Princeton University
A. Lopez, Universidad de Puerto Rico
B. Hoeneisen, Universidad San Francisco de Quito
S. Dhawan, P. E. Karchin, W. Ross, A. J. Slaughter, Yale University
(January 2, 1989)

Abstract

We propose a program of research and development into the detector systems needed
for a B-physics experiment at the Fermilab p-\bar{p} Collider. The initial emphasis is on the
critical issues of vertexing, tracking, and data acquisition in the high-multiplicity, high-rate
collider environment. R&D for the particle-identification systems (RICH counters, TRD’s,
and EM calorimeter) will be covered in a subsequent proposal. To help focus our efforts
in a timely manner, we propose the first phase of the R&D should culminate in a system
test at the C0 collider intersect during the 1990-1991 run: a small fraction of the eventual
vertex detector would be used to demonstrate that secondary-decay vertices can be found
at a hadron collider. The proposed budget for the R&D program is $800k in 1989, $1.5M
Event Builder Switch...telephone technology
Expression of Interest
for
A Bottom Collider Detector at the SSC
(May 25, 1990)

Executive Summary

This Expression of Interest describes a physics program to collect and analyze a sample of $> 10^{12}$ $B\bar{B}$ pairs. The emphasis is on the study of CP violation in the Standard Model via direct measurements of CKM-matrix elements. This physics occurs at low transverse momentum and over a broad rapidity range, which complements the program of other SSC experiments that explore high-P_t and high mass.

Industrial collaborators:

A. Pitas, Baker Manufacturing
J. Cooper, E-Systems Garland Division
G. Kramer, C. Pfeiffer, S. Augustine, Hughes Aircraft Company
J. Rattner, Intel Scientific Computers
Non-leptonic Decays

Figure 3: Seven graphs for the nonleptonic decays of B mesons. The dashed lines are W bosons; gluons are not shown.
Proposal for a B-Physics Experiment at TEV I
The μBCD

(October 8, 1990)

H. Castro, B. Gomez, F. Rivera, J.-C. Sanabria, Universidad de los Andes
J.F. Arens, G. Jernigan, U.C. Berkeley, Space Sciences Lab
P. Yager, U.C. Davis
J.M. Butler, L.A. Garren, S. Kwan, P. Lebrun, J. Morfin, T. Nash,
L. Stutte, Fermilab
P. Avery, J. Yelton, U. Florida
M. Adams, D. McLeod, C. Halliwell, U. Illinois, Chicago
R. Burnstein, H. Cease, H. Rubin, Illinois Institute of Technology
E.R. McCliment, Ý. Onel, U. Iowa
D. London, U. Montreal
M.S. Alam, A. Deogirikar, W. Gibson, S.U.N.Y. Albany
C.L. Britton, K. Castleberry, C. Nowlin, C. Sohns, Oak Ridge National Lab
P. Gutierrez, G.R. Kälbfleisch, D.H. Kaplan, P. Skubic, J. Snow,
U. Oklahoma
L.D. Gladney, N.S. Lockyer, R. Van Berg, U. Pennsylvania
D.J. Judd, D.E. Wagoner, K. Paick, L. Turnbull, Prairie View A&M U.
J.G. Heinrich, C. Lu, K.T. McDonald, Princeton U.
A.M. Lopez, J.C. Palathingal, A. Mendez, J. Millan, R. Palomera-Garcia,
Universidad de Puerto Rico
B. Hoeneisen, C. Marin, C. Jimenez, Universidad San Francisco de Quito
M. Sheaff, U. Wisconsin
A.J. Slaughter, E. Wolin, Yale University
Filed trips: Bee on a Chip & fire ants SSC

- **NY Times:**
 - Chip to Track 'Killer' Bees Is Invented
 - The chip, which has not yet been tested in the field, can be glued to the thorax of a bee. It weighs only about 35 milligrams, so it "should not affect the bee's ability to fly," said Kelly Falter, a member of the team responsible for creation of the microchip.
Motion of a Leaky Tank Car

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(December 4, 1989; updated October 10, 2014)

1 Problem

Describe the motion of a tank car initially at rest once an off-center drain opens. The tank car rolls without friction on a horizontal surface, and the water flows out of the drain vertically in the rest frame of the car.

2 Solution

The motion of a leaky tank car is surprisingly complex. We approach a solution in four steps: a brief discussion of the motion, a discussion of the forces that cause the motion, a general analysis, and lastly two detailed examples.

This problem has appeared in recent years on qualifying exams in Russia.1
Kirk Quotes

- Spend your money…you’ll never get more if you save it
- Join APS, or you will never get an award
- That guy likes physics so much you don’t have to pay him
We drove a long time, finally found this backwater Texas café, Don’t remember what we ordered but it was worth the drive