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1 Problem

In the classic yo-yo problem a spool of mass m, radius r0, and moment of inertia I = kmr2
0

about it axis has a massless, infinitely thin string wrapped around the radius r0, with one
end of the string fixed to a support above the spool, as shown in the left figure below.

Consider also the case that the string is a tape of length L, thickness t and mass per unit
length ρ, with either the end of the tape fixed as in the middle figure above, or with the axis
of the spool fixed and mass M attached to the end of the tape.

Discuss the motion in all three cases, assuming that the length l of the unwound portion
of the string/tape is initially zero.

2 Solution

2.1 Massless String

The vertical speed v of the center of mass of the spool is related to its angular velocity ω by
v = l̇ = ωr0. Hence, the (constant) energy of the yoyo, which starts from rest with l = 0 at
time t = 0, is

E = 0 =
mv2

2
+

Iω2

2
− mgl =

m(1 + k)l̇2

2
− mgl. (1)

Thus,

l̇2 =
2gl

1 + k
, l̈ =

g

1 + k
, l =

gt2

2(1 + k)
. (2)

For the case of a solid cylinder of radius r0, k = 1/2, l̈ = 2g/3 and l = gt2/3.
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2.2 Yo-Yo with Massive Tape

We next consider a yo-yo suspended by a tape, rather than a string, of length L, thickness
t, linear mass density ρ and mass mt = ρL. When length l of the tape has been unwound,
the remaining tape on the yo-yo has area (L − l)t = π(r2 − r2

0), where

r =

√
πr2

0 + (L − l)t

π
(3)

is the outer radius of the tape on the yo-yo. Then, the mass and moment of inertia of the
yo-yo are

my = m + ρ(L − l), Iy = kmr2
0 +

πρ(r4 − r4
0)

2t
. (4)

In the approximation that the length l of the unwound tape is straight, the system has
only two degrees of freedom, which we take to be the length l and the angle θ of that length
to the vertical. Then, taking the origin to be at the support point of the tape, the center of
the yo-yo is at position

xy = l sin θ + r cos θ, yy = −l cos θ + r sin θ, (5)

which point has velocity

ẋy = l̇ sin θ + l cos θ θ̇ + ṙ cos θ − r sin θ θ̇, ẏy = −l̇ cos θ + l sin θ θ̇ + ṙ sin θ + r cos θ θ̇. (6)

The velocity of the point on the tape that is just about to lose contact with the winding,
relative to the center of the yo-yo is l̇ − rθ̇, so the angular velocity of the yo-yo is

ω =
l̇ − rθ̇

r
=

l̇

r
− θ̇. (7)

The kinetic energy of the system is

T =
ρl3θ̇

2

6
+

my

2

(
l̇2 + ṙ2 + (l2 + r2) θ̇

2
+ 2lṙ θ̇ − 2rl̇ θ̇

)
+

Iyω
2

2
, (8)

and the potential energy is

V = −ρgl2 cos θ

2
+ mygyy. (9)

Lagrange’s method can now be used to deduce the equations of motion for coordinates
l and θ, but these are somewhat complicated. Here, we content ourselves with yet another
approximation, that angle θ is negligibly small. In this case, the kinetic energy of the system
is

T ≈ my

2

(
l̇2 + ṙ2

)
+

Iy l̇
2

2r2
(θ = 0), (10)
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and the potential energy is

V = −ρgl2

2
− mygl (θ = 0). (11)

This is still somewhat complicated, so we restrict our attention to the case of a roll of tape
wound on itself, i.e., m = 0 = r0, for which

r =

√
(L − l)t

π
, ṙ = − tl̇

2
√

π(L − l)t
, my = ρ(L − l), Iy =

πρr4

2t
, (12)

T ≈ 3ρl̇2(L − l)

4
+

ρl̇2t

8π
(θ = m = r0 = 0), (13)

and the potential energy is

V = −ρgl

(
L − l

2

)
(θ = m = r0 = 0). (14)

The total energy is zero, so T = −V , and

l̇2
(

1 +
t

6π(L − l)

)
=

2gl

3

2L − l

L − l
(θ = m = r0 = 0). (15)

Until the tape is almost completely unwound, 6π(L − l) � t, during which time

l̇2 ≈ 2gl

3

2L − l

L − l
, l̈ ≈ g

2L(L − l) + l2

3(L − l)2
(θ = m = r0 = 0). (16)

The initial acceleration (when l ≈ 0) is again 2g/3, as found in sec. 2.1. The acceleration of
the center of the roll of tape grows as it unwinds, reaching a maximum when L− l ≈ t with
l̈max ≈ gL2/3t2 � g.

Another approximation is that the tape is wound on a massless spool of radius r0 and
that the thickness t of the tape is negligible compared to r0. In this case the kinetic energy
is T = ρ(L − l)l̇2 and the potential energy is V = −ρgl(L − l/2), such that

l̇2 = g
l(L − l/2)

L − l
, l̈ = g

2L(L − l) + l2

4(L − l)2
. (17)

Both l̇ and l̈ diverge as l approaches L.
As discussed in [1, 2, 3, 4], if a roll of tape unwinds down an inclined plane, the end of

the unrolling tape strikes the plane with very high speed, making a loud sound.
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2.3 Unwinding Spool with Fixed Axle

For the third example sketched on p. 1, where the spool has a fixed axle and mass M hangs
from the end of the tape, eqs. (3)-(7) hold again, but with the interpretation that (xy, yy)
is the position of mass M . Then, (ẋy, ẏy) is the velocity of mass M , and of the lower end
of the unwound tape. The velocity of the upper end of the unwound tape is the sum of the
velocity of the point p = (r cos θ, r sin θ) where the tape leaves the spool and the velocity
ω × p = ω(−py, px) of the tape relative to that point. That is,

ẋupper = ṗx − ωpy, ẏupper = ṗy + ωpx, (18)

such that the velocity of the center of mass of the unwound tape is

ẋu =
ẋy + ẋupper

2
, ẏu =

ẋy + ẋupper

2
. (19)

The kinetic energy of this system is

T =
M

2
(ẋ2

y + ẏ2
y) +

ρl

2
(ẋ2

u + ẏ2
u) +

ρl3 θ̇
2

24
+

Iyω
2

2
, (20)

Recalling that ρ is the linear mass density of the tape, the potential energy is

V = Mgyy + ρlgyu. (21)

In the approximations that the angle θ of the tape to the vertical is negligible, and that
terms in ṙ are negligible, then ṗ = 0, ω = l̇/r, ẋu = ẋy = 0, ẏu = ẏy = −l̇, and the kinetic
energy becomes

T ≈ l̇2

2

(
M + ρl +

Iy

r2

)
(22)

=
l̇2

2

(
M + ρl +

πkmr2
0

πr2
0 + (L − l)t

+
ρ[πr2

0 + (L − l)t]

2t
− π2ρr4

0

2t[πr2
0 + (L − l)t]

)
,

while the potential energy is now

V ≈ −Mgl − ρl2g

2
. (23)

The total energy is zero, so again T = −V , and

l̇2
(
M + ρl +

πkmr2
0

πr2
0 + (L − l)t

+
ρ[πr2

0 + (L − l)t]

2t
− π2ρr4

0

2t[πr2
0 + (L − l)t]

)
= 2Mgl + ρl2g. (24)

The resulting expression for l̇ could be integrated numerically to find l(t).

A somewhat trivial case is that the hanging mass M is large compared to the mass of
the spool and tape, for which l̈ = g. Another special case is that the spool has zero radius,
r0 = 0, such that

l̇2 [2M + ρ(L + l)] = 2gl(2M + ρl), l̈ = g
2M [2M + ρ(L + 2l)] + ρ2l(2L + l)

[2M + ρ(L + l)]2
. (25)
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If there is no hanging mass M , the acceleration of the unwound tape becomes

l̇2 = g
2l2

L + l
, l̈ = g

l(2L + l)

(L + l)2
, (26)

which starts out at zero and rises to 3g/4 when the tape is fully unwound.1 The center of
mass of the tape is at

ycm = − l2

2L
, ÿcm = − l l̈ + l̇2

L
= −g

l2(4L + 3l)

L(L + l)2
. (27)

As the tape becomes fully unwound, the acceleration of the center of mass of the tape is
ÿcm → −7g/4, but once the tape is fully unwound ÿcm must be −g.2
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1The angular velocity of the still-wound tape diverges as the unwound length l approaches L, and the
approximation that the unwound tape is entirely vertical breaks down.

2This discrepancy is further evidence that the approximations used here do not hold well as the length
l of the unwound tape approaches L, for the idealized case that M = 0 and r0 = 0.

5


