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1 Problem

Discuss the electromagnetic field momentum of a cylindrical shell of radius a that carries
surface charge density λ per unit length along it axial direction when the cylinder rotates
with angular velocity ω about its axis. In addition there can be charge density λ0 per unit
length at rest along the axis of the cylinder.

This problem is based on a query by Michael Romalis, May 20, 2015. The geometry is
that of the Feynman cylinder paradox [1].

2 Solution

We take the z-axis to be that of the cylinder.

The electric field is radial in a cylindrical coordinate system (r, φ, z), and given in Gaus-
sian units by

E =

⎧⎪⎨
⎪⎩

2λ0

r
r̂ (r < a),

2(λ0+λ)
r

r̂ (r > a).
(1)

The rotating cylindrical shell of charge produces a solenoidal magnetic field, which is given
in the approximation of an infinite cylinder as

B =

⎧⎪⎨
⎪⎩

2λω
c

ẑ (r < a),

0 (r > a).
(2)
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However, since ∇ ·B = 0 everywhere, the lines of magnetic field form closed loops and there
is a weak magnetic field outside a physical, finite solenoid.

The angular momentum stored in the electromagnetic fields is nominally given by

LP =
∫

r × pEM dVol, =
∫

r × E × B

4πc
dVol, (3)

which we call the Poynting form,1 where the density of momentum stored in the electromag-
netic fields is

pEM =
S

c2
=

E × B

4πc
. (4)

For an infinite solenoid, with nominally zero magnetic field outside, this form gives an unphys-
ical result for the field angular momentum, as discussed in [6]. Rather, the field momentum
of long solenoids is more expediently computed via the (Maxwell) form based on the vec-
tor potential in the Coulomb gauges (which was interpreted by Maxwell as electromagnetic
momentum [7]).

LM =
∫

r × �A

c
dVol. (5)

The equivalence of the two forms (3) and (5) for bounded, quasistatic charge and current
distributions was perhaps first shown in [8], and is demonstrated in sec. 2.2 of [9].

The vector potential in the present example can be written as

A =

⎧⎪⎨
⎪⎩

rB(r<a)
2

φ̂ = rλω
c

φ̂ (r < a),

a2B(r<a)
2r

φ̂ = a2λω
cr

φ̂ (r > a).
(6)

Hence, the electromagnetic field angular momentum is

LEM =
∫

r × ρA

c
dVol = a r̂ × λ

aB(r < a)φ̂

2c
=

λa2ω

c2
ẑ, (7)

for any value of the charge density λ0 along the axis.

2.1 Do the Electric and Magnetic Field Lines Rotate as the

Cylinder Rotates?

An appealing view of electric field lines is that they begin/end on electric charges, such that
if charges are in motion so are the electric fields lines associated with them. Hence, when
λ0 = 0 or −λ, we readily interpret the radial electric field lines of eq. (1) as rotating with
angular velocity ω.

In contrast, magnetic field lines always form close loop, as magnetic charges do not exist
(as far as we know). Hence, it is less clear that the magnetic field lines rotate along with the
charged cylinder. Indeed, Faraday’s view (secs. 218 and 220 of [10], and sec. 3090 of [11])
was that the magnetic field lines do not rotate in this case.2

1The form (3) is based on the Poynting vector S [2], and was first given by J.J. Thomson [3, 4, 5].
2For a review of this issue, see sec. 2 of [12].
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If we follow Einstein [13] in supposing that the density u = (E2 +B2)/8π of energy in the
electric and magnetic fields corresponds to density u/c2 of effective mass, and also suppose
that this energy density rotates along with the charged cylinder, then there are densities of
momentum and angular momentum associated with the fields. In particular, the angular
momentum per unit length associated with the rotating electric field lines when λ0 = −λ is

LE =
∫

r×
(

E2

8πc2
ω × r

)
dArea =

∫ a

0

r2ω

8πc2

(
2λ

r

)2

2πr dr ẑ =
λ2a2ω

2c2
ẑ (λ0 = −λ), (8)

and that associated with the magnetic field (if it rotates) is

LB =
∫

r ×
(

B2

8π2
ω × r

)
dArea =

∫ a

0

r2ω

8πc2

(
2λω

c

)2

2πr dr ẑ =
λ4a2ω3

2c4
ẑ, . (9)

In contrast, the field angular momentum per unit length was computed in eq. (7) to be
λ2a2ω ẑ/c2.

The supposed contribution (9) to the field angular momentum due to the possibly rotating
magnetic field lines does not have the same functional form as the “standard” result (7),
which reinforces Faraday’s view that the magnetic fields lines are not actually rotating in
this case.

On the other hand, the result (8) obtained by assuming that the electric field lines do
rotate is 1/2 of the “standard” result (7). This suggests that there is some validity to
regarding the rotating electric field as carrying momentum and angular momentum with it.

However, when we consider the case that the wire along the axis has zero charge density
rather than −λ, we see that the interpretation of the rotating electric field as carrying angular
momentum is doubtful.

We noted above that the most reliable computation of the field angular momentum
associated with a long/infinite solenoid is via the vector potential as in eq (7), independent
of the value of the charge density λ0 on the wire.

In particular, if λ0 = 0, then the electric field is zero for r < a, and Er = 2λ/r for r > a,
and the field angular momentum associated with the rotating electric field lines is infinite,3

LE =
∫

r ×
(

E2

8πc2
ω × r

)
dArea =

∫ ∞

a

r2ω

8πc2

(
2λ

r

)2

2πr dr ẑ =
λ2(∞2 − a2)ω

2c2
ẑ. (10)

Note also that the velocity of rotation of the electric field lines is v = ωr at radius r,
which exceeds the speed of light for r > c/ω. Hence, the interpretation of the rotating
field energy density u = E2/8π as being associated with an effective, rotating mass density
E2/8πc2 is doubtful for r > c/ω.

We conclude that the form (3), or better (5), should be used for computation of the
field angular momentum, rather than supposing that the rotating electric field lines can be
associated with a rotating, effective mass density E2/8πc2.

3In this case the Poynting form (3) for the field angular momentum is nominally zero, which illustrates
a limitation of this form for infinite solenoids [6].
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A Rotating Spherical Shell of Charge

The case of a spherical shell of radius a with uniform surface density of electric charge in
rotation at angular velocity ω about, say, the z-axis has been considered in [14]. For total
charge Q the electric field in the lab frame is, in spherical coordinates (r, θ, φ),

E(r < a) = 0,

E(r > a) =
Q

r2
r̂ , (11)

independent of the angular velocity ω, while inside the shell the magnetic field is uniform,
and outside the shell it has the form of a point magnetic dipole m = Qa2ω ẑ/3c,

B(r < a) =
2m

a3
=

2Qω

3ac
ẑ,

B(r > a) =
3(m · r̂)r̂ − m

r3
=

Qa2ω

3cr3
(2 cos θ r̂ − sin θ θ̂). (12)

The vector potential can be written as

A(r < a) =
r sin θB(r < a)

2
φ̂ =

r sin θQω

3ac
φ̂,

A(r > a) =
m × r̂

r2
=

sin θQa2ω

3cr2
φ̂, (13)

so the field angular momentum can be computed from the Maxwell form (5) as

LEM =
∫

r × �A

c
dVol =

∫
ar̂× Q

4πa2

sin θQω

3c2
φ̂dArea =

Q2ω

12πac2

∫ 1

−1
sin2 θ 2πa2 d cos θ ẑ

=
2Q2aω

9c2
ẑ (14)

If we suppose that the electric and magnetic field lines rotate along with the spherical
shell, the field angular momentum associated with the moving field energy density would be

LE =
∫

r ×
(

E2

8πc2
ω × r

)
dVol = 2π

∫ ∞

a
r2 dr

∫ 1

−1
d cos θ

r2ω sin2 θ

8πc2

Q2

r4
ẑ =

Q2(∞− a)ω

3c2
ẑ,(15)

and that associated with the magnetic field is

LB =
∫

r ×
(

B2

8πc2
ω × r

)
dVol = 2π

∫ a

0
r2 dr

∫ 1

−1
d cos θ

r2ω sin2 θ

8πc2

4Q2ω2

9a2c2
ẑ

+2π
∫ ∞

a
r2 dr

∫ 1

−1
d cos θ

r2ω sin2 θ

8πc2

Q2a4ω2

9c2r6
(3 cos2 θ + 1) ẑ =

37Q2a3ω3

105c4
ẑ. (16)

Again, it seems to be a bad model that the field lines rotate and carry field energy with
them that can be associated with a moving, effective mass density.
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