
“Hidden” Momentum in a Charged, Rotating Cylinder
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(April 9, 2015; updated May 17, 2015)

1 Problem

Discuss the motion of a uniformly charged, nonconducting cylinder, initially rotating about
its axis, which cylinder lies between the plates of a capacitor, when the rotation drops zero.

The cylinder (of radius a) and the plates of the capacitor (in the planes y = ±b) can
move independently and without friction in the x-direction, where the z-axis is that of the
cylinder. That axis can be electrically charged with the opposite sign to that of the cylinder
such that the cylinder as a whole has zero charge. The (linear, isotropic) medium between
the capacitor plates, including the interior of the cylinder, has relative permittivity ε and
relative permeability μ. Ignore gravity.

This problem is a variant of that considered by Shockley [1], which is itself a variant
of the Feynman disk paradox [2], which can be traced back to a discussion by Poincaré
(1896) [3, 4], who built on a prescient argument of Darboux (1878) [5]. The geometry of this
problem is also related to that of the Aharonov-Bohm effect [6].

2 Solution

2.1 Electric and Magnetic Fields

As the cylinder rotates with angular velocity ω it supports surface current I = ωaσ per unit
length, where σ is the electrical charge density on the surface r = a in cylindrical coordinates
(r, φ, z). In the approximation of a very long cylinder, the magnetic field is uniform and axial
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inside it, and zero outside.

B = ∇ × A = μH, Bz =
1

r

∂rAφ

∂r
= μHz =

⎧⎨
⎩

4πμI
c

= 4πμωaσ
c

(r < a),

0 (r > a),
(1)

in Gaussian units. The vector potential is azimuthal,

Aφ =
1

2πr

∫
Bz dArea =

⎧⎨
⎩

rBz

2
= 2πμωaσr

c
(r < a),

a2Bz

2r
= 2πμωa3σ

cr
(r > a).

(2)

When the angular velocity drops at rate ω̇ < 0, the induced electric field is

Eind,φ = −1

c

∂Aφ

∂t
=

⎧⎨
⎩

−2πμω̇arσ
c2

(r < a),

−2πμω̇a3σ
c2r

(r > a).
(3)

The capacitor plates are charged until the interior electric field is

E0(|y| < b) = −E0 ŷ, D0(|y| < b) = −εE0 ŷ, (4)

for which the surface-charge densities on the plates are

σ0(y = ±b) = ±D0

4π
= ±εE0

4π
. (5)

In addition, the electric field due to the charges on the cylinder and on its axis is

E1(r < a) =
D1(r < a)

ε
=

2πaσ

εr
r̂, (6)

as the charge per unit length along the axis is −2πaσ. The electric field E0 is zero outside
the capacitor, and E1 is zero outside the cylinder in the 2-dimensional approximation.

2.2 Motion of the Capacitor

As the angular velocity drops to zero, ω̇ < 0, the induced electric field (3) acts on the
positively charged plate at y = b to push it in the −x direction (and also pushes the plate
towards y = 0, but we suppose the plates are held apart by the medium between them).
Likewise, the electric field induced on the negatively charged plate at y = −b pushes it in the
−x direction, so the capacitor will move in this direction (assuming that there is no friction
between the plates and the medium between).

The sum of the force per unit length in y on the two plates is

Fcapacitor,x = 2

∫ ∞

−∞
σ0Eind,x(y = b) dx = −2

∫ ∞

−∞

εE0

4π

2πμω̇a3σb

c(x2 + b2)
dx =

πεμE0ω̇a3σ

c
. (7)

so the capacitor (considered to be separate from the medium between its plates) takes on
mechanical momentum per unit length

Pcapacitor,x =

∫
Fcapacitor,x dt = −πεμE0ωa3σ

c2
, (8)

when the angular velocity drops from ω to zero. If the capacitor is free to move relative to
the medium/cylinder, it has final velocity in the −x direction.

2



2.3 Motion of the Cylinder

The total force of the electric field E0 on the charged cylinder and axis is zero, so this force
produces no motion of the cylinder, presuming that the cylinder is held fixed with respect
to its axis, while being free to rotate about the latter (with no friction against the media on
either side of the cylindrical surface).

As the angular velocity drops to zero, ω̇ < 0, the electric field induced at the cylinder
r = a opposes the reduction in ω (Lenz’ law) but does not prevent it from dropping to zero.
However, the sum of the forces of the induced field on the cylinder is also zero, and leads to
no net motion of its center of mass.1

2.4 Motion of the Medium

We suppose that the medium between the capacitor plates moves with the axis of the cylinder,
and vice versa. However, this medium does not rotate along with the cylinder (although in
principle the cylindrical portion of the medium inside the charged cylinder could be rotating
along with it). This medium supports bound surface charges densities at on its surfaces at
y = ±b (as well as on its surfaces next to the cylinder and axis; but these densities do not
lead to net forces),

σb(y = ±b) = P · n̂ =
(ε − 1)E0

4π
· (∓ŷ) = −ε − 1

ε
σ0(y = ±b) = ∓(ε − 1)E0

4π
. (9)

The sum of the force per unit length in y on the two surfaces of the medium next to the
capacitor plates is

Fmedium,x = 2

∫ ∞

−∞
σbEind,x(y = b) dx = 2

∫ ∞

−∞

(ε − 1)E0

4π

2πμω̇a3σb

c(x2 + b2)
dx =

πεμE0ω̇a3σ

c
. (10)

so the medium (considered to be separate from the capacitor) takes on mechanical momentum
per unit length

Pmedium,x =

∫
Fmedium,x dt =

π(ε− 1)μE0ωa3σ

c2
, (11)

when the angular velocity drops from ω to zero. If the medium is free to move relative to
the capacitor (carrying the rotating, charged cylinder along with it), the final velocity of the
medium+cylinder is in the +x direction.

Meanwhile the capacitor moves in the −x direction (sec. 2.2) as the angular velocity of
the cylinder falls to zero. The final (mechanical) momentum per unit length of the entire
system is

Ptotal,x = Pmedium,x + Pcapcitor,x = −πμE0ωa3σ

c2
, (12)

This appears to be a violation of conservation of momentum, as noted by Shockley [1] for
a closely related example. Following him, we now look more carefully for “hidden” forces,
energy and momenta in the system.

1If the cylinder were to move, it would carry along the medium inside and outside it.
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2.5 Flow of Energy in Electromagnetic Fields

A major addition to Maxwell’s electrodynamics was made in 1884 by Poynting [7] and
Heaviside [8] when they provided a description of the flow of energy in electromagnetic
fields.

Poynting’s theorem expresses energy conservation in electromagnetic phenomena in the
form2

∂ energy density

∂t
+ ∇ · energy current density = source power density. (13)

In the standard version, the sources on the right side are “nonelectromagnetic” in character,
such as batteries or dynamos that convert chemical (i.e., quantum electrodynamic) or “me-
chanical” (another form of quantum field) energy into “electromagnetic” form as understood
in the context of “classical” electrodynamics.

We find it instructive to characterize the nonelectromagnetic power source by a nonelec-
tromagnetic field E′ that acts on the “free” conduction current Jfree according to an extension
of Ohm’s law,

Jfree = σ(E + E′), (14)

where E is the usual electric field and σ is the conductivity of the medium that supports
the conduction current. This permits us to relate the nonelectromagnetic field E′ to electro-
magnetic quantities,

E′ =
Jfree

σ
− E. (15)

The total density of power delivered by the nonelectromagnetic source to the electromag-
netic system is then

Pnonelectromagnetic,total = Jfree · E′ =
J2

free

σ
− Jfree · E. (16)

The first term on the right side of eq. (16) is the density of Joule heating of the conductive
medium, and we regard this power as “lost” with respect to the electromagnetic system. In
contrast, the second term represents power that is transferred from the nonelectromagnetic
system into energy stored, or flowing, within the electromagnetic system,

Pnonelectromagnetic,transferred = −Jfree ·E = − c

4π
E ·

(
∇ × H − 1

c

∂D

∂t

)
(17)

=
c

4π

(
∇ · (E ×H) − H · ∇ ×E + E · 1

c

∂D

∂t

)

=
c

4π

(
∇ · (E ×H) + E · 1

c

∂D

∂t
+ H · 1

c

∂B

∂t

)
,

2Apparently, the form (13) was first considered by Umov [9] as an extrapolation to energy flow of Euler’s
continuity equation for mass flow [10].
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where we have used the third and fourth macroscopic Maxwell equations and a vector-
calculus identity. Of course, D = E + 4πP and B = H + 4πM, where P and M are the
densities of electric and magnetic dipoles. We identify the Poynting vector,

S(Poynting) =
c

4π
E × H =

c

4π
E × B− cE × M, (18)

as describing the flow (current density) of electromagnetic energy, and

∂u(Poynting)

∂t
=

1

4π

(
E · ∂D

∂t
+ H · ∂B

∂t

)
=

E2 + B2

8π
+ E · ∂P

∂t
− M · ∂B

∂t
. (19)

as the time rate of change of the electromagnetic energy density u.
While Poynting’s theorem (17) clearly suggests that S(Poynting) describes the flow of elec-

tromagnetic energy, it does not definitively identify the electromagnetic energy density u.
Further, the expressions (18)-(19) include P and M, which are not electromagnetic fields so
much as fields related to charge and current distributions. This leaves open the possibility
that some alternative form of eq. (17) might be preferable.

2.5.1 Poynting’s Theorem for Linear Media

For so-called linear media in which E is proportional to D and B is proportional to H, the
expression (19) is a perfect differential and we can write the electromagnetic energy density
u(Poynting) as

u(Poynting) =
E · D + B · H

8π
=

E2 + B2

8π
+

E · P
2

− B · M
2

, (20)

and Poynting’s theorem reads

∇ · S(Poynting) +
∂u(Poynting)

∂t
= −4π

c
Jfree · E = Pnonelectromagnetic,transferred. (21)

2.5.2 An Alternative

The standard version (21) of Poynting’s theorem assumes that only free currents can be
sources or sinks of electromagnetic field energy. But as we examine the possibility of “hidden”
forces, energy and momentum it is useful to consider at least one alternative, that the “total”
current can emit/absorb field energy,3

Jtotal = Jfree +
∂P

∂t
+ c∇× M, (22)

3We do not consider Maxwell’s displacement current, (1/4π)∂D/∂t, in the current J that couples to E
as a source or sink of field energy, although logically we could. Indeed, following this line of thought leads
to 729 variants of Poynting’s theorem, most of which are rather implausible physically as they imply that
the electromagnetic fields are sources of themselves [11]. Of course, such behavior occurs in gravity and the
strong interaction, which are described by nonlinear field theories.
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where the second and third terms in eq. (22) and the so-called (bound) polarization and
magnetization currents. This assumptions leads to a variant of Poynting’s theorem,

∇ · S(E−B) +
∂u(E−B)

∂t
= Psource = −4π

c
E · Jtotal,

S(E−B) =
c

4π
E× B, u(E−B) =

E2 + B2

8π
. (23)

This variant is the macroscopic average of the microscopic version of Poynting’s theorem,
where here the E and B are macroscopic averages over their microscopic counterparts. Equa-
tion (23) might be called the “pure” electromagnetic field version of Poynting’s theorem in
that for all other variants the “material” fields P or M appear somewhere in S or u.4

2.6 Electromagnetic Field Momentum

The notion of momentum stored in an electromagnetic field was first developed by J.J. Thom-
son, building on Poynting’s description of the flow of energy in the field.

2.6.1 Radiation Pressure and the Momentum of Light

Apparently, Kepler considered the pointing of comets’ tails away from the Sun as evidence
for radiation pressure of light [17]. After his unification of electricity, magnetism and light
[18], Maxwell argued (sec. 792 of [19]) that the radiation pressure P of light is equal to its
energy density u,

P = u =
D2

4π
=

H2

4π
(26)

for an electromagnetic wave with fields D and H in vacuum, but he did not explicitly
associate this pressure with momentum in the electromagnetic field.5

4The “alternative” argument of this section was presented by Fano, Chu and Adler (1960) as the standard
argument in sec. 7.10 of [12]. However, those authors were immediately disconcerted by the implication (their
sec. 5.4) that a (nonconducting) permanent magnet in an electric field supports a flow of energy from one
part of the magnet to another. This flow of energy is essential to the discussion in a companion note [13] to
the present one.

The discomfort of Fano, Chu and Adler with eq. (23) led to the suggestion of another alternative,

∇ · S(Poynting) +
∂u(E−B)

∂t
= −4π

c
E ·

(
Jfree +

∂P
∂t

)
+ 4πM · ∂B

∂t
(24)

in eq. (4) of [14] and in eq. (7.70) of [15], which was rewritten in eq. (5) of[16] as

∇ · S(Poynting) +
∂u(E−B)

∂t
= −4π

c
E ·

(
Jfree +

∂P
∂t

)
+ 4π

(
∂(B · M)

∂t
− B · ∂M

∂t

)
. (25)

5Maxwell (and Thomson and Lorentz and most others influenced by the concept of a material aether),
regarded the fields D and H as more “basic” than E and B.
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Building on Faraday’s electrotonic state [20], Maxwell did have a conception of electro-
magnetic momentum, computed as [18, 19]

P
(Maxwell)
EM =

∫
ρA(C)

c
dVol, (27)

where ρ is the electric charge density and A(C) is the vector potential in the Coulomb gauge
(that Maxwell used prior to the explicit recognition of gauge conditions [21]), but the form
(3) seems to associate the momentum with charges rather than with fields.

In 1891 [22], Thomson noted that a sheet of electric displacement D (parallel to the
surface) which moves perpendicular to its surface with velocity v must be accompanied
by a sheet of magnetic field H = v/c × D according to the free-space Maxwell equation
∇×H = (1/c) ∂D/∂t.6 Then, the motion of the energy density of these sheets implies there
is also a momentum density, eqs. (2) and (6) of [22],

p
(Thomson)
EM =

D × H

4πc
. (28)

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent Researches
[25], adding the remark (p. 9) that the momentum density (4) is closely related to the
Poynting vector [7, 26],7,8 now commonly written as eq. (18),

S(Poynting) =
c

4π
E ×H. (29)

The form (28) was also used by Poincaré in 1900 [30], following Lorentz’ convention [31]
that the force on electric charge q be written q(D + v/c ×H) and that the Poynting vector
is (c/4π)D × H. In 1903 Abraham [32] argued for

p
(Abraham)
EM =

E × H

4πc
=

S(Poynting)

c2
, (30)

and in 1908 Minkowski [33] advocated the form9,10

p
(Minkowski)
EM =

D × B

4πc
. (31)

Thomson did not relate the momentum density (11) to the radiation pressure of light,
eq. (9), until 1904 (p. 355 of [35]; see also [36]) when he noted that P = F/A = c pEM =

6Variants of this argument were given by Heaviside in 1891, sec. 45 of [23], and much later in sec. 18-4 of
[2], where it is noted that Faraday’s law, ∇ × E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted in sec. 265 of [24].

7The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [9], based on Euler’s continuity equation [10] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

8Thomson argued, in effect, that the field momentum density (4) is related by pEM = S/c2 = uv/c2

[22, 25]. See also eq. (19), p. 79 of [23], and p. 6 of [27]. It turns out that the energy flow velocity defined
by v = S/u can exceed c (see, for example, sec. 2.1.4 of [28] and sec. 4.3 of [29].

9Minkowski, like Poynting [7], Heaviside [26] and Abraham [32], wrote the Poynting vector as E × H.
See eq. (75) of [33].

10For some remarks on the “perpetual” Abraham-Minkowski debate see [34].
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D2/4π = H2/4π for fields moving with speed c in vacuum, for which D = H. He also gave
an argument (p. 348 of [35]) that the forms (3) and (4) for field momentum are equivalent
once the sources of the fields are taken into account.11

Among the various forms for the electromagnetic field momentum, that associated with
the “E-B” Poynting vector of eq. (23) is the field-momentum density

p
(E−B)
EM =

S(E−B)

c2
=

E × B

4πc
(32)

2.6.2 Field Momentum inside the Rotating Cylinder

In the present example the magnetic field is nonzero only inside the cylinder, so the field-only
momentum per unit length along z is

P
(E−B)
EM =

∫
E × B

4πc
dVol′ =

∫
E0 ×B

4πc
dVol′ +

∫
E1 × B

4πc
dVol′ = −πμa3E0ωσ

c2
x̂, (33)

which is only due to the field E0 of the capacitor, with no net contribution from the radial
electric field E1 inside the cylinder.

This initial field momentum (per unit length) is identical to the final mechanical mo-
mentum (12) of the system after the magnetic field, and the field energy, have dropped to
zero. Hence, it is suggestive (but not definitive) that the final mechanical momentum of the
system is the result of conversion of field momentum into mechanical momentum as the field
vanishes.

But, this leaves open the issue that it seems contradictory for a system initially “at rest”
to end up with nonzero total momentum.

11Possibly, Thomson delayed publishing the relation of radiation pressure to his expression (4) until he
could demonstrate its equivalence to Maxwell’s form (10). For other demonstrations of this equivalence, see
Appendix B of [37], and [38].
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For completeness, we note that the Abraham and Minkowski momenta are

P
(A)
EM =

∫
E0 × H

4πc
dVol′ = −πa3E0ωσ

c2
x̂, P

(M)
EM =

∫
D0 ×B

4πc
dVol′ = −πεμa3E0ωσ

c2
x̂.(34)

2.7 “Hidden” Mechanical Momentum

2.7.1 A Suggestive Argument

A related example, in which momentum appeared not to be conserved in an electrome-
chanical system initially “at rest”, led Shockley in 1967 to develop the notion of “hidden”
mechanical momentum [1], i.e., that the total mechanical momentum of a system is not
necessarily the product of its mechanical mass/energy and the velocity of its center of me-
chanical mass/energy.12,13 This notion was clarified in important ways by Coleman and Van
Vleck [40].

Here, we note with Poincaré [30] and Abraham [32] that the momentum density pEM

equals the Poynting vector divided by c2, pEM = S/c2. Then, the figure above indicates
that energy is transferred from the currents on the right to those on the left. According to
Einstein’s U = mc2, such transfer of energy should change the masses of the charges in the
currents, and hence also there momenta change. Qualitatively, the lowest mass/momentum
is for the currents at (x, y) = (0, a), and the highest at (0,−a). For counterclockwise rotation,
the differing momenta of the currents as a function of azimuth lead to a net momentum in
the +x direction. This “hidden” mechanical momentum14 should be equal and opposite to
the initial field momentum, such that the total initial momentum of the system is zero.

Then, as the rotation of the cylinder vanishes, this “hidden” mechanical momentum
should be converted into “overt” momentum of the cylinder/medium, which should end up
with momentum opposite to that of the capacitor plate.

2.7.2 Detailed Computation for the Rotating Cylinder

The flux of electromagnetic energy into a surface is given by the normal component of the
Poynting vector. As seen earlier, only the Poynting vector associated with the electric field
E0 of the capacitor is relevant for the momentum of the system, so the Poynting flux into/out
of the rotating cylinder is, for the E-B form (23) of for the Poynting vector,

dU

dt dArea
(r = a) = r̂ · S(E−B) =

c

4π
r̂ · E0 × B(r = a) =

c

4π
r̂ × E0 · B(r = a)

=
c

4π
E0,φBz(r = a) =

c

4π
(−E0 cos φ)

4πωaσ

c
= −E0ωaσ cos φ, (35)

12The first such example was given in 1904 by J.J. Thomson on p. 348 of [35]. See also [36]. For
examples with “hidden” mechanical momentum in systems with an electric dipole in a magnetic field due to
current loops, all “at rest”, such that various equal and opposite “overt” mechanical momenta arise as the
electromagnetic fields are brought to zero in various ways, see [39], especially secs. IV and V.

13For a general discussion on the meaning of “hidden” momentum see [37].
14We call this momentum “mechanical”, but in the view of quantum field theory, all “mechanical mass,

energy and momentum is field mass, energy, momentum. It is tempting to speculate that this “hidden
mechanical” momentum is electromagnetic in origin, but the premise that all mass is electromagnetic mass
(first postulated by J.J. Thomson is 1881 [41]) has not stood the test of time. A more contemporary
speculation is that “hidden mechanical” momentum is as aspect of the Higgs field.
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The mass of the material that absorbs or emits this Poynting flux changes at the rate

dm(r = a)

dt dArea
=

1

c2

dU

dt dArea
= −E0ωaσ cosφ

c2
. (36)

On the other hand, the present system is “at rest”, and we expect that the mass at a given
location (r, φ, z) cannot depend on time.

Of course, the cylinder is rotating, which transports the changed masses azimuthally, and
permits a steady-state mass-density distribution per unit area in the lab frame,

σmass(r = a, φ) = σmass,0(r = a) + Δσmass(r = a, φ). (37)

During small time interval dt the mass per unit length along z in an element a dφ of the
rotating cylinder at r = a changes by amount

dm =
dm(r = a)

dt dArea
dt a dφ + adφ(Δσmass(φ − ωdt) − Δσmass(φ)), (38)

but which change must be zero for a system “at rest”. Hence,

0 = −E0ωaσ cosφ

2πc2
− ω

dΔσmass

dφ
, Δσmass(r = a)φ) = −E0aσ sinφ

c2
. (39)

The corresponding density of azimuthal momentum per unit length along z in the rotating
cylinder at r = a is

dpφ(r = a)

dφ
= aσmass(aω) = a2ωσmass,0(r = a) − E0a

3ωσ sinφ

c2
. (40)

Consequently, the (azimuthal) momentum of the rotating cylinder varies with φ, and the
cylinder has nonzero total momentum, even though it is part of a system “at rest”,

Px(r = a) =

∫ 2π

0

dpφ(r = a)

dφ
(− sin φ) dφ =

πE0a
3ωσ

c2
. (41)

This possibly surprising, nonzero momentum of the rotating cylinder has been called its
“hidden” mechanical momentum.

Thus, in the case that the medium has permeability μ = 1, the momentum (41) of the
rotating cylinder is equal and opposite to the momentum (33) stored in the E and B fields.
The total momentum of the system is zero when it is “at rest”, but with the charged cylinder
in rotation.

If the rotation ceases, the momentum (41) drops to zero, resulting in a force on the
cylinder that converts the “hidden” mechanical momentum of the rotating cylinder (whose
center does not move) into “overt” momentum of the cylinder (whose center then moves in
the +x direction).

In the final state, the capacitor and the cylinder (+ medium with μ = 1) are moving in
opposite directions, with equal and opposite momenta.

This resolves the “paradox” noted at the end of sec. 2.3, at least for the case that μ = 1
in the medium.
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We note that if we had used the Poynting vector (29) for computation of the transfer
of mass/energy from one side of the rotating cylinder to the other, and used the Abraham
field-momentum density (30), which leads to the field momentum given in eq. (34), then the
“paradox” is again resolved. Further, the “hidden” mechanical momentum of the rotating
cylinder is still given by eq. (41) even when the medium has μ �= 1.

However, the paradox would not be resolved if the Minkowski field-momentum density
(31) were used.

2.7.3 Detailed Computation for the Cylindrical Medium

If the medium has permeability μ different from unity, the “hidden” mechanical momentum
of the rotating cylinder is not equal in magnitude to the momentum (33) stored in the field,
although their directions are opposite. Recall that eq. (33) holds for the assumption that
the field-momentum density is the E-B form (32), in which case the bound currents in the
medium also serve as sources/sinks for the Poynting flux. Hence, we need to compute the
“hidden” mechanical momentum in the bound surface currents.15

The magnetic field Bz at the surface r = a− of the inner cylinder of the medium is
2μωaσ/c, so the Poynting flux into/out of this surface is, for the E-B form (23) of for the
Poynting vector,

dU

dt dArea
(r = a−) =

c

4π
r̂ · E0 × B(r = a−) = −μE0ωaσ cos φ. (42)

The mass of the this surface of the cylindrical medium thereby changes at the rate

dm(r = a−)

dt dArea
=

1

c2

dU

dt dArea
= −μE0ωaσ cos φ

c2
. (43)

The cylindrical medium is “at rest”, so its mass does not vary with time, but rather mass
is convected around the surface such that the surface mass density is constant in time, but
varies with azimuth φ.

The outer surface of the cylinder of the medium supports a bound surface current density

Kbound(r = a−) = cM× n̂ =
c(μ − 1)H

4π
× r̂ =

(μ − 1)ωaσ

2
φ̂, (44)

This surface current density is not due to an actual electric surface charge density σ that
rotates with angular velocity ω, but it is equivalent to it.

For a steady mass distribution, as required for the system to be “at rest”, an argument
equivalent to that in the preceding section indicates that the part of the mass density on the
surface of the cylindrical medium which varies with φ is

Δσmass(r = a−, φ) = −(μ − 1)E0aσ sinφ

c2
. (45)

15If the Poynting vector (29) and the Abraham field-momentum density (30) were used, the bound surface
currents would not absorb/emit field energy of the form (20). In this case, the present section is irrelevant.
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This mass distribution is effectively convected with angular velocity ω, such that the corre-
sponding density of azimuthal momentum per unit length along z on the surface at r = a−

of the cylindrical medium at r = a− is

dpφ(r = a−)

dφ
= aΔσmass(aω) = −(μ − 1)E0a

3ωσ sin φ

c2
, (46)

since only the mass difference Δσmass is effectively convected. Consequently, the (azimuthal)
momentum of the cylindrical medium varies with φ, and this cylinder has nonzero total
momentum, even though it “at rest”,

Px(r = a−) =

∫ 2π

0

dpφ(r = a−)

dφ
(− sinφ) dφ =

π(μ − 1)E0a
3ωσ

c2
. (47)

Hence, the total mechanical momentum of the medium + rotating cylinder is

Pcylinder+medium,x = Px(r = a−) + Px(r = a) =
πμE0a

3ωσ

c2
. (48)

This is equal and opposite to the E-B field momentum (33) when the medium has perme-
ability μ �= 1.

Thus, the “paradox” of the end of sec. 2.3 is resolved for any value of the permeability,
either using the E-B Poynting vector (28) and field-momentum density (32), or by use of the
Poynting vector (29) and the Abraham field-momentum density (30).

2.8 Comments

This example, like that of Shockley [1], illustrates that consistency of the laws of mechanics in
electromechanical systems “at rest” implies that the electrical currents can contain a nonzero
net momentum, called “hidden” momentum by Shockley. The transport of mass/energy from
one part of the system to another by the Poynting vector indicates the need for this “hidden”
momentum, and permits computation of this tiny quantity in the present example.

However, there are at least two reasonable assumptions as to the form of the Poynting
vector in macroscopic electrodynamics, eqs. (23) and (29), and these two assumptions lead
to differing values of the nonzero, equal and opposite, electromagnetic field momentum and
“hidden” mechanical momentum for the system “at rest”. The present example does not
indicate that one or the other of these two assumptions is more “correct”.

A different example, in which a uniformly, azimuthally magnetized toroid is between
the electrodes of a cylindrical capacitor [13], has H = 0 everywhere but Bφ nonzero inside
the toroid, and appears to favor use of the E-B Poynting vector (23) and the associated
field-momentum density (32).

Consideration of these two examples indicate that both the Abraham momentum density
(30) and the Minkowski momentum density (31) are disfavored in accounting for observable
final motions of parts of systems initially “at rest”.

12



2.8.1 “Hidden” Momentum via Work rather than the Poynting Vector

Many explanations of “hidden” mechanical momentum proceed via consideration of the
work done by the electric field on the moving charges that comprise the electrical current
[39, 15, 42, 43, 44].16 This is appealing from the point of view of mechanics, but leaves open
the question of where does the energy gained by the charges come from?

A tacit view associated with the work done by the electric field is that the energy gained
by the charges has come from the (distant) sources of the electric field. However, this view is
not very “Maxwellian”, with its implication of action at a distance, or that the energy flowed
along lines of the electric field that does the work. In contrast, the view considered here is
that the Poynting vector describes the flow of electromagnetic energy, which indicates that
the flow of energy is perpendicular to lines of the electric (and magnetic) field. Indeed, in
the present example, the energy gained by charges on the rotating disk comes from energy
lost by other charged particles elsewhere on the same disk, rather than from the charges on
the capacitor plates (or from the electric field of the capacitor).

That is, the arguments presented here have the possible appeal of being more “Maxwellian”
than those based on work done by the electric field, although both approaches succeed in
accounting for the “hidden” mechanical momentum of the electrical currents.17
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associated with magnetization M.

13



[4] K.T. McDonald, Birkeland, Darboux and Poincaré: Motion of an Electric Charge in
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(1900), http://physics.princeton.edu/~mcdonald/examples/EM/poincare_an_5_252_00.pdf
Translation: The Theory of Lorentz and the Principle of Reaction,
http://physics.princeton.edu/~mcdonald/examples/EM/poincare_an_5_252_00_english.pdf

15
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